
deproject Documentation
Release 0.1.3

Tom Aldcroft

Dec 19, 2018

Contents

1 Model creation 3

2 Fitting 5

3 Densities 7

4 Download 9

5 Installation 11

6 Test 13

7 Example: M87 15

8 Example: Multi-obsid 21

9 To Do 23

10 Module docs 25
10.1 deproject . 25
10.2 specstack . 25
10.3 cosmocalc . 25

Python Module Index 29

i

ii

deproject Documentation, Release 0.1.3

Deproject is a CIAO Sherpa extension package to facilitate deprojection of two-dimensional annular X-ray spectra
to recover the three-dimensional source properties. For typical thermal models this would include the radial tempera-
ture and density profiles. This basic method has been used extensively for X-ray cluster analysis and is the basis for
the XSPEC model projct. The deproject module brings this functionality to Sherpa as a Python module that is
straightforward to use and understand.

The deproject module uses specstack to allow for manipulation of a stack of related input datasets and their
models. Most of the functions resemble ordinary Sherpa commands (e.g. set_par, set_source, ignore) but operate on
a stack of spectra.

The basic physical assumption of deproject is that the extended source emissivity is constant and optically thin
within spherical shells whose radii correspond to the annuli used to extract the specta. Given this assumption one
constructs a model for each annular spectrum that is a linear volume-weighted combination of shell models. The
geometry is illustrated in the figure below (which would be rotated about the line to the observer in three-dimensions):

Contents 1

http://cxc.harvard.edu/ciao/
http://cxc.harvard.edu/sherpa/
http://heasarc.gsfc.nasa.gov/docs/xanadu/xspec/
https://astrophysics.gsfc.nasa.gov/XSPECwiki/projct_model
http://cxc.harvard.edu/sherpa/ahelp/set_par.py.html
http://cxc.harvard.edu/sherpa/ahelp/set_source.py.html
http://cxc.harvard.edu/sherpa/ahelp/ignore.py.html

deproject Documentation, Release 0.1.3

2 Contents

CHAPTER 1

Model creation

It is assumed that prior to starting deproject the user has extracted source and background spectra for each annulus.
By convention the annulus numbering starts from the inner radius at 0 and corresponds to the dataset id used within
Sherpa. It is not required that the annuli include the center but they must be contiguous between the inner and outer
radii.

Given a spectral model M[s] for each shell s, the source model for dataset a (i.e. annulus a) is given by the sum
over s >= a of vol_norm[s,a] * M[s] (normalized volume * shell model). The image above shows shell 3
in blue and annulus 2 in red. The intersection of (purple) has a physical volume defined as vol_norm[3,2] *
v_sphere where v_sphere is the volume of the sphere enclosing the outer shell.

The bookkeeping required to create all the source models is handled by the deproject module.

3

deproject Documentation, Release 0.1.3

4 Chapter 1. Model creation

CHAPTER 2

Fitting

Once the composite source models for each dataset are created the fit analysis can begin. Since the parameter space is
typically large the usual procedure is to initally fit using the “onion-peeling” method:

• First fit the outside shell model using the outer annulus spectrum

• Freeze the model parameters for the outside shell

• Fit the next inward annulus / shell and freeze those parameters

• Repeat until all datasets have been fit and all shell parameters determined.

From this point the user may choose to do a simultanenous fit of the shell models, possibly freezing some parameters
as needed. This process is made manageable with the specstack methods that apply normal Sherpa commands like
freeze or set_par to a stack of spectral datasets.

5

http://cxc.harvard.edu/sherpa/ahelp/freeze.py.html
http://cxc.harvard.edu/sherpa/ahelp/set_par.py.html

deproject Documentation, Release 0.1.3

6 Chapter 2. Fitting

CHAPTER 3

Densities

Physical densities (cm^-3) for each shell can be calculated with deproject assuming the source model is based on
a thermal model with the “standard” normalization (from the XSPEC documentation):

Inverting this equation and assuming a constant ratio of N_H to electrons:

n_e = sqrt(norm * 4*pi * DA^2 * 1e14 * (1+z)^2 / (volume * ne_nh_ratio))

norm = model normalization from Sherpa fit
DA = angular size distance (cm)
volume = volume (cm^3)
ne_nh_ratio = 1.18

Recall that the model components for each volume element (intersection of the annular cylinder a with the spherical
shell s) are multiplied by a volume normalization:

vol_norm[s,a] = v[s,a] / v_sphere
v_sphere = volume of sphere enclosing outer annulus

With this convention the volume used above in calculating the electron density for each shell is always v_sphere.

7

http://heasarc.gsfc.nasa.gov/docs/xanadu/xspec/

deproject Documentation, Release 0.1.3

8 Chapter 3. Densities

CHAPTER 4

Download

The deproject package is available for download at deproject.tar.gz. The M87 data needed to run the example
analysis is available as m87.tar.gz

The source is available on github at https://github.com/taldcroft/deproject.

9

downloads/deproject.tar.gz
downloads/m87.tar.gz
https://github.com/taldcroft/deproject

deproject Documentation, Release 0.1.3

10 Chapter 4. Download

CHAPTER 5

Installation

The deproject package includes three Python modules that must be made available to the CIAO python so that
Sherpa can import them. The first step is to untar the package tarball, change into the source directory, and initialize
the CIAO environment:

tar zxvf deproject-<version>.tar.gz
tar zxvf m87.tar.gz -C deproject-<version>/examples # Needed for example / test
→˓script
cd deproject-<version>
source /PATH/TO/ciao/bin/ciao.csh

There are three methods for installing. Choose ONE of the three.

Simple:

The very simplest installation strategy is to just leave the module files in the source directory and set the PYTHONPATH
environment variable to point to the source directory:

setenv PYTHONPATH $PWD

This method is fine in the short term but you always have to make sure PYTHONPATH is set appropriately (perhaps in
your ~/.cshrc file). And if you start doing much with Python you will have PYTHONPATH conflicts and things will get
messy.

Better:

If you cannot write into the CIAO python library then do the following. These commands create a python library in
your home directory and install the deproject modules there. You could of course choose another directory instead
of $HOME as the root of your python library.

mkdir -p $HOME/lib/python
python setup.py install --home=$HOME
setenv PYTHONPATH $HOME/lib/python

Although you still have to set PYTHONPATH this method allows you to install other Python packages to the same
library path. In this way you can make a local repository of packages that will run within Sherpa.

11

deproject Documentation, Release 0.1.3

Best:

If you have write access to the CIAO installation you can just use the CIAO python to install the modules into the
CIAO python library. Assuming you are in the CIAO environment do:

python setup.py install

This puts the new modules straight in to the CIAO python library so that any time you enter the CIAO environment
they will be available. You do NOT need to set PYTHONPATH.

12 Chapter 5. Installation

CHAPTER 6

Test

To test the installation change to the source distribution directory and do the following:

cd examples
sherpa
execfile('fit_m87.py')
plot_fit(0)
log_scale()

This should run through in a reasonable time and produce output indicating the onion-peeling fit. The plot should
show a good fit.

13

deproject Documentation, Release 0.1.3

14 Chapter 6. Test

CHAPTER 7

Example: M87

Now we step through in detail the fit_m87.py script in the examples directory to explain each step and illustrate
how to use the deproject module. This script should serve as the template for doing your own analysis.

This example uses extracted spectra, response products, and analysis results for the Chandra observation of M87 (obsid
2707). These were kindly provided by Paul Nulsen. Results based on this observation can be found in Forman et al
2005 and via the CXC Archive Obsid 2707 Publications list.

The first step is to tell Sherpa about the Deproject class and set a couple of constants:

from deproject import Deproject

redshift = 0.004233 # M87 redshift
arcsec_per_pixel = 0.492 # ACIS plate scale
angdist = 4.9e25 # M87 distance (cm) (16 Mpc)

Next we create a numpy array of the the annular radii in arcsec. The numpy.arange method here returns an array from
30 to 640 in steps of 30. These values were in pixels in the original spectral extraction so we convert to arcsec. (Note
the convenient vector multiplication that is possible with numpy.)

radii = numpy.arange(30., 640., 30) * arcsec_per_pixel

The radii parameter must be a list of values that starts with the inner radius of the inner annulus and includes each
radius up through the outer radius of the outer annulus. Thus the radii list will be one element longer than the
number of annuli.

Now the key step of creating the Deproject object dep. This object is the interface to the all the deproject
methods used for the deprojection analysis.

dep = Deproject(radii, theta=75, angdist=angdist)

If you are not familiar with object oriented programming, the dep object is just a thingy that stores all the information
about the deprojection analysis (e.g. the source redshift, PHA file information and the source model definitions) as
object attributes. It also has object methods (i.e. functions) you can call such as dep.get_par(parname) or
dep.load_pha(file). The full list of attributes and methods are in the deproject module documentation.

15

http://adsabs.harvard.edu/abs/2005ApJ...635..894F
http://adsabs.harvard.edu/abs/2005ApJ...635..894F
http://cda.harvard.edu/chaser/viewerContents.do?obsid=2707&operation=ads
http://www.scipy.org/NumPy
http://docs.scipy.org/doc/numpy/reference/generated/numpy.arange.html#numpy.arange
http://www.scipy.org/NumPy

deproject Documentation, Release 0.1.3

In this particular analysis the spectra were extracted from a 75 degree sector of the annuli, hence theta=75 in the
object initialization. For the default case of full 360 degree annuli this is not needed. Because the redshift is not a
good distance estimator for M87 we also explicitly set the angular size distance.

Now load the PHA spectral files for each annulus using the Python range function to loop over a sequence ranging
from 0 to the last annulus. The load_pha() call is the first example of a deproject method (i.e. function) that
mimics a Sherpa function with the same name. In this case dep.load_pha(file, annulus) loads the PHA
file using the Sherpa load_pha function but also registers the dataset in the spectral stack:

for annulus in range(len(radii)-1):
dep.load_pha('m87/r%dgrspec.pha' % (annulus+1), annulus)

The annulus parameter is required in dep.load_pha() to support analysis of multi-obsid datasets.

With the data loaded we set the source model for each of the spherical shells with the set_source() method.
This is one of the more complex bits of deproject. It automatically generates all the model components for each
shell and then assigns volume-weighted linear combinations of those components as the source model for each of the
annulus spectral datasets:

dep.set_source('xswabs * xsmekal')

The model expression can be any valid Sherpa model expression with the following caveats:

• Only the generic model type should be specified in the expression. In typical Sherpa usage one generates
the model component name in the model expression, e.g. set_source("xswabs.abs1 * xsmekal.
mek1"). This would create model components named abs1 and mek1. In dep.set_source() the model
component names are auto-generated as <model_type>_<shell>.

• Only one of each model type can be used in the model expression. A source model expression like “xsmekal +
gauss1d + gauss1d” would result in an error due to the model component auto-naming.

Now the energy range used in the fitting is restricted using the stack version of the Sherpa ignore command. The
notice command is also available.

dep.ignore(None, 0.5)
dep.ignore(1.8, 2.2)
dep.ignore(7, None)

Next any required parameter values are set and their freeze or thaw status are set.

dep.set_par('xswabs.nh', 0.0255)
dep.freeze("xswabs.nh")

dep.set_par('xsmekal.abundanc', 0.5)
dep.thaw('xsmekal.abundanc')

dep.set_par('xsmekal.redshift', redshift)

As a convenience if any of the model components have a redshift parameter that value will be used as the default
redshift for calculating the angular size distance.

At this point the model is completely set up and we are ready to do the initial “onion-peeling” fit. As for normal
high-signal fitting with binned spectra we issue the commands to set the optimization method, set the fit statistic, and
configure Sherpa to subtract the background when doing model fitting. Finally the deproject fit() method is
called to perform the fit.

set_method("levmar") # Levenberg-Marquardt optimization method
set_stat("chi2gehrels") # Gehrels Chi^2 fit statistic

(continues on next page)

16 Chapter 7. Example: M87

http://cxc.harvard.edu/sherpa/ahelp/load_pha.py.html
http://cxc.harvard.edu/sherpa/ahelp/ignore.py.html
http://cxc.harvard.edu/sherpa/ahelp/notice.py.html
http://cxc.harvard.edu/sherpa/ahelp/freeze.py.html
http://cxc.harvard.edu/sherpa/ahelp/thaw.py.html
http://cxc.harvard.edu/sherpa/ahelp/subtract.py.html

deproject Documentation, Release 0.1.3

(continued from previous page)

dep.subtract()
dep.fit()

After the fit process each shell model has an association normalization that can be used to calculate the densities.
This is where the source angular diameter distance is used. If the angular diameter distance is not set explicitly in the
original dep = Deproject(...) command then it is calculated automatically from the redshift found as a source
model parameter. One can examine the values being used as follows:

print "z=%.5f angdist=%.2e cm" % (dep.redshift, dep.angdist)

The electron density is then calculated with the get_density() method and plotted in Sherpa:

density_ne = dep.get_density()
rad_arcmin = (dep.radii[:-1] + dep.radii[1:]) / 2.0 / 60.
add_curve(rad_arcmin, density_ne)
set_curve(['symbol.color', 'red', 'line.color', 'red'])
set_plot_xlabel('Radial distance (arcmin)')
set_plot_ylabel('Density (cm^{-3})')
limits(X_AXIS, 0.2, 10)
log_scale()
print_window('m87_density', ['format', 'png'])

The temperature profile from the deproject can be plotted as follows:

kt = dep.get_par('xsmekal.kt') # returns array of kT values
add_window()
add_curve(rad_arcmin, kt)
set_plot_xlabel('Radial distance (arcmin)')
set_plot_ylabel('Density (cm^{-3})')

The unphysical temperature oscillations seen here highlights a known issue with this analysis method.

In the images below the deproject results (red) are compared with values (black) from an independent onion-
peeling analysis by P. Nulsen using a custom perl script to generate XSPEC model definition and fit commands. These
plots were created with the plot_m87.py script in the examples directory. The agreement is good:

17

http://heasarc.gsfc.nasa.gov/docs/xanadu/xspec/

deproject Documentation, Release 0.1.3

18 Chapter 7. Example: M87

deproject Documentation, Release 0.1.3

19

deproject Documentation, Release 0.1.3

20 Chapter 7. Example: M87

CHAPTER 8

Example: Multi-obsid

A second example illustrates the use of deproject for a multi-obsid observation of 3c186. It also shows how to
set a background model for fitting with the cstat statistic. The extracted spectral data for this example are not yet
publicly available.

The script starts with some setup:

import deproject

radii = ('2.5', '6', '17')
dep = deproject.Deproject(radii=[float(x) for x in radii])

set_method("levmar")
set_stat("cstat")

Now we read in the data as before with dep.load_pha(). The only difference here is an additional loop over the
obsids. The dep.load_pha() function automatically extracts the obsid from the file header. This is used later in
the case of setting a background model.

obsids = (9407, 9774, 9775, 9408)
for ann in range(len(radii)-1):

for obsid in obsids:
dep.load_pha('3c186/%d/ellipse%s-%s.pi' % (obsid, radii[ann], radii[ann+1]),

→˓annulus=ann)

Create and configure the source model expression as usual:

dep.set_source('xsphabs*xsapec')
dep.ignore(None, 0.5)
dep.ignore(7, None)
dep.freeze("xsphabs.nh")

dep.set_par('xsapec.redshift', 1.06)
dep.set_par('xsphabs.nh', 0.0564)

Set the background model:

21

deproject Documentation, Release 0.1.3

execfile("acis-s-bkg.py")
acis_s_bkg = get_bkg_source()
dep.set_bkg_model(acis_s_bkg)

Fit the projection model:

dep.fit()

22 Chapter 8. Example: Multi-obsid

CHAPTER 9

To Do

• Use the Python logging module to produce output and allow for a verbosity setting. [Easy]

• Create and use more generalized ModelStack and DataStack classes to allow for general mixing models.
[Hard]

23

deproject Documentation, Release 0.1.3

24 Chapter 9. To Do

CHAPTER 10

Module docs

10.1 deproject

10.1.1 Deproject class

10.2 specstack

10.2.1 Classes

10.3 cosmocalc

Calculate useful values for a given cosmology. This module uses code adapted from CC.py (James Schombert) which
is a Python version of the Cosmology Calculator (Ned Wright).

The following values are calculated:

25

http://www.astro.ucla.edu/~wright/CC.python
http://abyss.uoregon.edu/~js/
http://www.astro.ucla.edu/~wright/CosmoCalc.html
http://www.astro.ucla.edu/~wright/intro.html

deproject Documentation, Release 0.1.3

Name Value Units
z Input redshift
H0 Hubble constant
WR Omega(radiation)
WK Omega curvaturve = 1-Omega(total)
WM Omega matter
WV Omega vacuum
DTT Time from z to now Gyr
age Age of Universe Gyr
zage Age of Universe at redshift z Gyr
DCMR Comoving radial distance Gyr Mpc cm
VCM Comoving volume within redshift Gpc3
DA Angular size distance Gyr Mpc cm
DL Luminosity distance Gyr Mpc cm
PS Plate scale - distance per arcsec kpc cm

Copyright Smithsonian Astrophysical Observatory (2009)

Author Tom Aldcroft (aldcroft@head.cfa.harvard.edu)

10.3.1 Functions

cosmocalc.cosmocalc(z, H0=71, WM=0.27, WV=None)
Calculate useful values for the supplied cosmology.

This routine returns a dictionary of values in the form <name>: <value>, where the values are supplied in
“natural” units for cosmology, e.g. 1/H0. In addition various useful unit conversions are done and stored in the
dictionary as <name>_<unit>: <value>. E.g. angular size distance:

'DA': 0.38250549415474988,
'DA_Gyr': 5.2678010166833023,
'DA_Mpc': 1615.1022857909447,
'DA_cm': 4.9836849147807571e+27

Example:

>>> from cosmocalc import cosmocalc
>>> from pprint import pprint
>>> pprint(cosmocalc(3, H0=75, WM=.25))
{'DA': 0.39103776375786625,
'DA_Gyr': 5.0980896720325548,
'DA_Mpc': 1563.0689649039205,
'DA_cm': 4.8231268630387788e+27,
'DCMR': 1.564151055031465,
'DCMR_Gyr': 20.392358688130219,
'DCMR_Mpc': 6252.2758596156818,
'DCMR_cm': 1.9292507452155115e+28,
'DL': 6.25660422012586,
'DL_Gyr': 81.569434752520877,
'DL_Mpc': 25009.103438462727,
'DL_cm': 7.717002980862046e+28,
'DTT': 0.84826379084317027,
'DTT_Gyr': 11.059097795819358,
'H0': 75,
'PS_cm': 2.3383178917293232e+22,

(continues on next page)

26 Chapter 10. Module docs

mailto:aldcroft@head.cfa.harvard.edu

deproject Documentation, Release 0.1.3

(continued from previous page)

'PS_kpc': 7.5779721961095019,
'VCM': 1.2756009121294902,
'VCM_Gpc3': 1023.7714254161302,
'WK': 0.0,
'WM': 0.25,
'WR': 7.4044444444444448e-05,
'WV': 0.74992595555555552,
'age': 1.0133755371756261,
'age_Gyr': 13.211714670004362,
'z': 3,
'zage': 0.16511174633245579,
'zage_Gyr': 2.1526168741850036}

Parameters

• z – redshift

• H0 – Hubble constant (default = 71)

• WM – Omega matter (default = 0.27)

• WV – Omega vacuum (default = 1.0 - WM - 0.4165/(H0*H0))

Return type dictionary of cosmology values (name_unit = value)

cosmocalc.get_options()
cosmocalc.py [options] redshift [name_unit [name_unit2 . . .]]

Allowed name_unit values:

DA DA_Gyr DA_Mpc DA_cm
DL DL_Gyr DL_Mpc DL_cm
DCMR DCMR_Gyr DCMR_Mpc DCMR_cm
PS_kpc PS_cm
DTT DTT_Gyr
VCM VCM_Gpc3
age age_Gyr
zage zage_Gyr
H0 WM WV WK WR z

If no name_unit values are supplied then all the above will be printed.

cosmocalc.main()

10.3. cosmocalc 27

deproject Documentation, Release 0.1.3

28 Chapter 10. Module docs

Python Module Index

c
cosmocalc, 25

29

deproject Documentation, Release 0.1.3

30 Python Module Index

Index

C
cosmocalc (module), 25
cosmocalc() (in module cosmocalc), 26

G
get_options() (in module cosmocalc), 27

M
main() (in module cosmocalc), 27

31

	Model creation
	Fitting
	Densities
	Download
	Installation
	Test
	Example: M87
	Example: Multi-obsid
	To Do
	Module docs
	deproject
	specstack
	cosmocalc

	Python Module Index

