

Deproject

Deproject is a CIAO [http://cxc.harvard.edu/ciao/] Sherpa [http://cxc.harvard.edu/sherpa/] extension package to facilitate
deprojection of two-dimensional circular annular X-ray spectra to recover the
three-dimensional source properties. For typical thermal models this would
include the radial temperature and density profiles. This basic method
has been used extensively for X-ray cluster analysis and is the basis for the
XSPEC [https://heasarc.gsfc.nasa.gov/docs/xanadu/xspec/] model projct [https://asd.gsfc.nasa.gov/XSPECwiki/projct_model]. The deproject module brings this
functionality to Sherpa as a Python module that is straightforward to use and
understand.

The module can also be used with the standalone Sherpa [https://sherpa.readthedocs.io/] release, but as
it requires support for XSPEC [https://heasarc.gsfc.nasa.gov/docs/xanadu/xspec/] models - for the thermal plasma emission
codes - the documentation will focus on using Sherpa with a CIAO [http://cxc.harvard.edu/ciao/]
environment.

Introduction

	Overview
	Model creation

	Fitting

	Densities

	Installation
	Requirements

	Using pip

	Manual installation

	Test

	Example data

	Changes
	Version 0.2.0

	Version 0.1.0

	To Do

Examples

	M87
	Set up

	Load the data

	Create the model

	Define the data to fit

	Define the optimiser and statistic

	Seeding the fit

	Fitting the data

	Inspecting the results

	Error analysis

	Comparing results

	Combining shells

	Multiple datasets per annulus (3C186)

Module documentation

	The deproject.deproject module
	Deproject

	deproject_from_xflt

	Class Inheritance Diagram

	The deproject.specstack module
	SpecStack

Overview

The deproject module uses specstack to allow for manipulation of
a stack of related input datasets and their models. Most of the functions
resemble ordinary Sherpa commands (e.g. set_par [https://sherpa.readthedocs.io/en/latest/ui/api/sherpa.astro.ui.set_par.html], set_source [https://sherpa.readthedocs.io/en/latest/ui/api/sherpa.astro.ui.set_source.html], ignore [https://sherpa.readthedocs.io/en/latest/ui/api/sherpa.astro.ui.ignore.html])
but operate on a stack of spectra.

The basic physical assumption of deproject is that the extended source
emissivity is constant and optically thin within spherical shells whose radii
correspond to the annuli used to extract the specta. Given this assumption one
constructs a model for each annular spectrum that is a linear volume-weighted
combination of shell models. The geometry is illustrated in the figure below
(which would be rotated about the line to the observer in three-dimensions):

[image: _images/geometry.png]

Model creation

It is assumed that prior to starting deproject the user has extracted
source and background spectra for each annulus. By convention the annulus
numbering starts from the inner radius at 0 and corresponds to the dataset
id used within Sherpa. It is not required that the annuli include the
center but they must be contiguous between the inner and outer radii.

Given a spectral model M[s] for each shell s, the source model for
dataset a (i.e. annulus a) is given by the sum over s >= a of
vol_norm[s,a] * M[s] (normalized volume * shell model). The image above
shows shell 3 in blue and annulus 2 in red. The intersection of (purple) has a
physical volume defined as vol_norm[3,2] * v_sphere where v_sphere
is the volume of the sphere enclosing the outer shell (as
discussed below).

The bookkeeping required to create all the source models is handled by the
deproject module.

Fitting

Once the composite source models for each dataset are created the fit analysis
can begin. Since the parameter space is typically large the usual procedure is
to initally fit using the “onion-peeling” method:

	First fit the outside shell model using the outer annulus spectrum

	Freeze the model parameters for the outside shell

	Fit the next inward annulus / shell and freeze those parameters

	Repeat until all datasets have been fit and all shell parameters determined.

From this point the user may choose to do a simultanenous fit of the shell
models, possibly freezing some parameters as needed. This process is made
manageable with the specstack methods that apply normal Sherpa
commands like freeze [https://sherpa.readthedocs.io/en/latest/ui/api/sherpa.astro.ui.freeze.html] or set_par [https://sherpa.readthedocs.io/en/latest/ui/api/sherpa.astro.ui.set_par.html] to a stack of spectral datasets.

Densities

Physical densities (\({\rm cm}^{-3}\)) for each shell can be calculated with
deproject assuming the source model is based on a thermal model with the
“standard” normalization (from the XSPEC [https://heasarc.gsfc.nasa.gov/docs/xanadu/xspec/] documentation):

\[{\rm norm} = \frac{10^{-14}}{4\pi [D_A (1+z)]^2} \int n_e n_H dV\]

where \(D_A\) is the angular size distance to the source (in cm),
\(z\) is the source redshift, and \(n_e\) and \(n_H\) are the
electron and Hydrogen densities (in \({\rm cm}^{-3}\)).

Inverting this equation and assuming constant values for \(n_e\)
and \(n_H\) gives

\[n_e = \sqrt{\frac{4\pi \, {\rm norm} \, [D_A (1+z)]^2 \, 10^{14}}{\alpha V}}\]

where \(V\) is the volume, \(n_H = \alpha n_e\), and
\(\alpha\) is taken to be 1.18 (and this ratio is
constant within the source).

Recall that the model components for each volume element (intersection of the
annular cylinder a with the spherical shell s) are multiplied by a
volume normalization:

\[V_{\rm norm}[s, a] = V[s, a] / V_{\rm sphere}\]

where \(V_{\rm sphere}\) is the volumne of the sphere enclosing the
outermost annulus.

With this convention the volume (\(V\)) used above in calculating
the electron density for each shell is always \(V_{\rm sphere}\).

Installation

As of version 0.2.0,
the deproject package can be installed
directly from PyPI [https://pypi.org/]. This requires
CIAO 4.11 [http://cxc.harvard.edu/ciao/]
or later (as installation with pip in earlier versions of
CIAO is not well supported). The module can be used with the
standalone release of
Sherpa [https://sherpa.readthedocs.io/en/latest/ciao.html],
but it is only useful if Sherpa has been built with
XSPEC support [https://sherpa.readthedocs.io/en/latest/install.html#xspec]
which is trickier to achieve than we would like.

Requirements

The package uses Astropy [http://docs.astropy.org/] and SciPy [https://www.scipy.org/scipylib/], for units support and
cosmological-distance calculations. It is assumed that
Matplotlib [https://matplotlib.org/] is available for plotting (which is
included in CIAO 4.11).

Using pip

CIAO

Installation within CIAO requires:

	having sourced the CIAO initialisation script (e.g.
ciao.csh or ciao.bash);

	and using a constraints file, to
avoid updating NumPy in CIAO [http://cxc.harvard.edu/ciao/scripting/index.html#install-numpy].

It should be as simple as:

echo "numpy==1.12.1" > constraints.txt
pip install -c constraints.txt 'astropy<3.1' deproject

Note

The constraints are for CIAO 4.11, please adjust accordingly
if using a newer version of CIAO (the Astropy restriction is
because version 3.1 requires NumPy version 1.13 or later but
CIAO 4.11 is shipped with NumPy version 1.12).

Standalone

When using the standalone Sherpa intallation, the following should
be all that is required:

pip install deproject

Manual installation

The source is available on github at
https://github.com/sherpa-deproject/deproject, with releases available
at https://github.com/sherpa-deproject/deproject/releases.

After downloading the source code (whether from a release or
by cloning the repository) and moving into the directory
(deproject-<version> or deproject), installation just
requires:

python setup.py install

Note

This command should only be run after setting up CIAO or whatever
Python environment contains your Standalone Sherpa installation.

Test

The source installation includes a basic test suite, which can be
run with either

pytest

or

python setup.py test

Example data

The example data can be download from either
http://cxc.cfa.harvard.edu/contrib/deproject/downloads/m87.tar.gz
or from GitHub [https://github.com/sherpa-deproject/deproject-data].
The source distribution includes scripts - in the
examples directory [https://github.com/sherpa-deproject/deproject/tree/master/examples]
- that can
be used to replicate both the basic M87 example
and the follow-on example combining annuli.

As an example (from within an IPython session, such as the
Sherpa shell in CIAO):

>>> %run fit_m87.py
...
... a lot of screen output will whizz by
...

The current density estimates can then be displayed with:

>>> dep.density_plot()

[image: _images/m87_density.png]
the reduced-statistic for the fit to each shell with:

>>> dep.fit_plot('rstat')

[image: _images/m87_rstat.png]
and the fit results for the first annulus can be displayed using
the Sherpa functions:

>>> set_xlog()
>>> plot_fit_delchi(0)

[image: _images/m87_ann0_fit.png]

Changes

Version 0.2.0

Overview

The code has been updated to run with Python 3 and can now be
installed from PyPI [https://pypi.org/]. Documentation has been moved to
Read The Docs [https://deproject.readthedocs.io/].

The deproject module now requires Astropy [http://docs.astropy.org/], which can be
installed within CIAO 4.11 [http://cxc.harvard.edu/ciao/scripting/index.html#install]. The three main areas where Astropy functionality is
used are:

	the use of Astropy Quantity [http://docs.astropy.org/en/stable/units/]
values (both for arguments to methods and returned values);

	Astropy Data Tables [http://docs.astropy.org/en/stable/table/]
are used to return tabular data;

	and Cosmology calculations now use the Astropy cosmology
module [http://docs.astropy.org/en/stable/cosmology/] rather than
the cosmocalc module.

The deproject_from_xflt() helper function
has been introduced, which uses the XFLT0001 to XFLT0005
keywords in the input files to determine the annulus parameters (radii
and covering angle). The covering angle (\(\theta\)) can now vary per
annulus.

Error values can now be generated using the onion-peeling approach,
for the confidence and covariance methods, and the values are returned
as an Astropy Table. Parameter values can now be tied together (to
combine annuli to try and avoid “ringing”). There is improved support
for accessing and plotting values.

Details

The code has been re-arranged into the deproject package, which
means that you really should say from deproject.deproject import
Deproject, but the deproject module re-exports
deproject.deproject so that existing scripts still work, and
you do not not have to type in the same word multiple times! The
package has been updated so that it is available on PyPI [https://pypi.org/].

The scaling between shells (calculated from the intersection between
spheres and cylinders) was limited to 5 decimal places, which could
cause problems with certain choices of annuli (such as an annulus
making no contribution to interior annuli). This restriction has been
removed.

Added support for per-annulus theta values (that is, each annulus
can have a different opening angle). The radii, theta, and
angdist parameters to Deproject
all now require values that is an
Astropy quantity [http://docs.astropy.org/en/stable/units/] rather
than a dimensionless value.

Added the deproject_from_xflt() helper
function, which creates a Deproject
instance from PHA files which contain the XSPEC XFLT0001 to XFLT0005
keywords (as used by the projct [https://asd.gsfc.nasa.gov/XSPECwiki/projct_model] model), rather than specifying the
values from the command line. The routine will error out if the
keywords indicate elliptical annuli, and the default is to assume the
radii are in arcseconds, but a scaling factor can be given if the
radii are in some other units (such as pixels).

Added the guess() method to do
an initial fit to each annulus, following the approach suggested in
the XSPEC [https://heasarc.gsfc.nasa.gov/docs/xanadu/xspec/] documentation for projct [https://asd.gsfc.nasa.gov/XSPECwiki/projct_model], by just fitting the
individual (not de-projected) models to each annulus. This can help
speed up the deproject fit -
fit() - as well as help avoid
the fit getting stuck in a local minimum.

Added covar() and
conf() methods that estimate
errors - using the covariance and confidence methods respectively -
using the onion-skin model (i.e. the errors on the outer annuli are
evaluated, then this component is frozen and the errors on the next
annulus are evaluated).

The fit(),
conf(), and
covar() methods now all return
Astropy Tables containing the results per annulus. These values can
also be retrieved with the
get_fit_results(),
get_conf_results(), or
get_covar_results() methods. A
number of columns (radii and density) are returned as Astropy
quantities.

The cosmocalc module has been removed and the Astropy cosmology
module [http://docs.astropy.org/en/stable/cosmology/] is used
instead. This is only used if the angular-diameter distance to the
source is calculated rather than explicitly given. The default
cosmology is now set to Planck15 [http://docs.astropy.org/en/stable/cosmology/index.html#built-in-cosmologies].

Values, as a function of radius, can be plotted with a number of new
methods: fit_plot(),
conf_plot(), and
covar_plot() display the last
fit results (with the last two including error estimates), and the
par_plot() and
density_plot() methods show
the current values. These support a number of options, including
switching between angular and physical distances for the radii.

The get_shells() method has
been added to make it easy to see which annuli are combined together,
and the get_radii() method to
find the radii of the annuli (in a range of units).

Added the tie_par() and
untie_par() methods to make it
easy to tie (or untie) parameters in neighbouring annuli. The
onion-skin approach - used when fitting or running an error analysis -
recognizes annuli that are tied together and fits these
simultaneously, rather than individually.

The set_source() method can
now be called multiple times (previously it would lead to an error).

Added error checking for several routines, such as
thaw() when given an
unknown parameter name.

Updated to support Python 3.5 and to have better support when the
pylab backend is selected. Support for the ChIPS backend is
limited. A basic test suite has been added.

Version 0.1.0

Initial version.

To Do

	Use the Python logging module to produce output and allow for a verbosity
setting. [Easy]

	Move from using obsid to a more-generic label for the multi-data-set
case (i.e. when there are multiple data sets in a given annulus)

	Allow the theta value to vary between data set in each annulus (for the
multi-data-set case)

	Support elliptical annuli

	Create and use more generalized ModelStack and DataStack classes
to allow for general mixing models. [Hard]

	Add summary methods (similar to Sherpa’s show series of commands)

	Add a specialized version of plot_source_component which takes a
general model expression (i.e. without the _annulus suffix) and
displays all combos per annulus. A bit tricky to get right.
There’s also a plot_model_component.

M87

Now we step through in detail the fit_m87.py script in the examples
directory to explain each step and illustrate how to use the deproject
module. This script should serve as the template for doing your own analysis.

This example uses extracted spectra, response products, and analysis results
for the Chandra observation of M87 (obsid 2707). These were kindly provided
by Paul Nulsen. Results based on this observation can be found in
Forman et al 2005 [https://ui.adsabs.harvard.edu/?#abs/2005ApJ...635..894F]
and via the CXC Archive Obsid 2707 Publications [https://cda.harvard.edu/chaser/viewerContents.do?obsid=2707&operation=ads] list.

The examples assume this is being run directly from the Sherpa shell,
which has already imported the Sherpa module. If you are using IPython
or a Jupyter notebook then the following command is needed:

>>> from sherpa.astro.ui import *

Set up

The first step is to load in the Deproject class:

>>> from deproject import Deproject

and then set a couple of constants (note that both the angular-diameter
distance and thta values must be
Astropy quantites [http://docs.astropy.org/en/stable/units/]):

>>> from astropy import units as u
>>> redshift = 0.004233 # M87 redshift
>>> angdist = 16 * u.Mpc # M87 distance
>>> theta = 75 * u.deg # Covering angle of sectors

Next we create an array of the the annular radii in arcsec. The
numpy.arange [https://docs.scipy.org/doc/numpy/reference/generated/numpy.arange.html#numpy.arange] method here returns an array from 30 to 640 in steps of 30.
These values were in pixels in the original spectral extraction so we
multiply by the pixel size (0.492 arcseconds) to convert to an angle.:

>>> radii = numpy.arange(30., 640., 30) * 0.492 * u.arcesc

The radii parameter must be a list of values that starts with the inner
radius of the inner annulus and includes each radius up through the outer
radius of the outer annulus. Thus the radii list will be one element
longer than the number of annuli.

>>> print(radii)
[14.76 29.52 44.28 59.04 73.8 88.56 103.32 118.08 132.84 147.6
 162.36 177.12 191.88 206.64 221.4 236.16 250.92 265.68 280.44 295.2
 309.96] arcsec

Now the key step of creating the Deproject object dep. This
object is the interface to the all the deproject
methods used for the deprojection analysis.

>>> dep = Deproject(radii, theta=theta, angdist=angdist)

If you are not familiar with object oriented programming, the dep object is
just a thingy that stores all the information about the deprojection analysis
(e.g. the source redshift, PHA file information and the source model
definitions) as object attributes. It also has object methods
(i.e. functions) you can call such as dep.get_par(parname) or
dep.load_pha(file). The full list of attributes and methods are in the
deproject module documentation.

In this particular analysis the spectra were extracted from a 75
degree sector of the annuli, hence theta is set in the object
initialization, where the units are set explicitly using the
Astropy support for units [http://docs.astropy.org/en/stable/units/].
Note that this parameter only needs to be set if any of the
annuli are sectors rather than the full circle.
Since the redshift is not a good distance
estimator for M87 we also explicitly set the angular size distance
using the angdist parameter.

Load the data

Now load the PHA spectral files for each annulus using the Python range
function to loop over a sequence ranging from 0 to the last annulus. The
load_pha()
call is the first example of a deproject method
(i.e. function) that mimics a Sherpa function with the same name. In this
case dep.load_pha(file, annulus) loads the PHA file using the
Sherpa load_pha [https://sherpa.readthedocs.io/en/latest/ui/api/sherpa.astro.ui.load_pha.html]
function but also registers the dataset in the spectral stack:

>>> for annulus in range(len(radii) - 1):
... dep.load_pha('m87/r%dgrspec.pha' % (annulus + 1), annulus)

Note

The annulus parameter is required in dep.load_pha() to allow
multiple data sets per annulus, such as repeated Chandra observations
or different XMM instruments.

Create the model

With the data loaded we set the source model for each of the spherical shells
with the
set_source()
method. This is one of the more complex bits of
deproject. It automatically generates all the model components for each
shell and then assigns volume-weighted linear combinations of those components
as the source model for each of the annulus spectral datasets:

>>> dep.set_source('xswabs * xsmekal')

The model expression can be any valid Sherpa model expression with the
following caveats:

	Only the generic model type should be specified in the expression. In
typical Sherpa usage one generates the model component name in the
model expression, e.g. set_source('xswabs.abs1 * xsmekal.mek1'). This
would create model components named abs1 and mek1. In
dep.set_source() the model component names are auto-generated as
<model_type>_<shell>.

	Only one of each model type can be used in the model expression. A source
model expression like "xsmekal + gauss1d + gauss1d" would result in an
error due to the model component auto-naming.

Next any required parameter values are set and their freeze [https://sherpa.readthedocs.io/en/latest/ui/api/sherpa.astro.ui.freeze.html] or thaw [https://sherpa.readthedocs.io/en/latest/ui/api/sherpa.astro.ui.thaw.html]
status are set.

>>> dep.set_par('xswabs.nh', 0.0255)
>>> dep.freeze('xswabs.nh')

>>> dep.set_par('xsmekal.abundanc', 0.5)
>>> dep.thaw('xsmekal.abundanc')

>>> dep.set_par('xsmekal.redshift', redshift)

As a convenience if any of the model components have a
redshift parameter that value will be used as the default redshift for
calculating the angular size distance.

Define the data to fit

Now the energy range used in the fitting is restricted using the stack version
of the Sherpa ignore [https://sherpa.readthedocs.io/en/latest/ui/api/sherpa.astro.ui.ignore.html] command. The notice [https://sherpa.readthedocs.io/en/latest/ui/api/sherpa.astro.ui.notice.html] command is also available.

>>> dep.ignore(None, 0.5)
>>> dep.ignore(1.8, 2.2)
>>> dep.ignore(7, None)

Define the optimiser and statistic

At this point the model is completely set up and we are ready to do the initial
“onion-peeling” fit. As for normal high-signal fitting with binned spectra we
issue the commands to set the optimization method and the fit statistic.

In this case we use the Levenberg-Marquardt optimization method with
the \(\chi^2\) fit statistic, where the variance is estimated
using a similar approach to XSPEC.

>>> set_method("levmar")
>>> set_stat("chi2xspecvar")
>>> dep.subtract()

Note

The chi2xspecvar statistic is used since the values will be
compared to results from XSPEC.

Seeding the fit

We first try to “guess” a good starting point for the fit (since the
default fit parameters, in particular the normalization, are often
not close to the expected value). In this case the
guess()
method implements a scheme suggested in the projct [https://asd.gsfc.nasa.gov/XSPECwiki/projct_model] documentation, which
fits each annulus with an un-projected model and then corrects the
normalizations for the shell/annulus overlaps:

>>> dep.guess()
Projected fit to annulus 19 dataset: 19
Dataset = 19
...
Change in statistic = 4.60321e+10
 xsmekal_19.kT 2.748 +/- 0.0551545
 xsmekal_19.Abundanc 0.429754 +/- 0.0350466
 xsmekal_19.norm 0.00147471 +/- 2.45887e-05
Projected fit to annulus 18 dataset: 18
Dataset = 18
...
Change in statistic = 4.61945e+10
 xsmekal_18.kT 2.68875 +/- 0.0543974
 xsmekal_18.Abundanc 0.424198 +/- 0.0335045
 xsmekal_18.norm 0.00147443 +/- 2.43454e-05
...
Projected fit to annulus 0 dataset: 0
Dataset = 0
...
Change in statistic = 2.15043e+10
 xsmekal_0.kT 1.57041 +/- 0.0121572
 xsmekal_0.Abundanc 1.05816 +/- 0.0373779
 xsmekal_0.norm 0.00152496 +/- 2.93297e-05

As shown in the screen output, the guess routine fits each
annulus in turn, from outer to inner. After each fit, the
normalization (the xsmekal_*.norm terms) are adjusted by
the filling factor of the shell.

Note

The guess step is optional. Parameter values can also be set,
either for an individual annulus with the Sherpa set_par [https://sherpa.readthedocs.io/en/latest/ui/api/sherpa.astro.ui.set_par.html] function,
such as:

set_par('xsmekal_0.kt', 1.5)

or to all annuli with the Deproject method
set_par():

dep.set_par('xsmekal.abundanc', 0.3)

The data can be inspected using normal Sherpa commands. The
following shows the results of the guess for dataset 0,
which corresponds to the inner-most annulus (the
datasets attribute
can be used to map between annuus and dataset identifier).

>>> set_xlog()
>>> plot_fit(0)

[image: ../_images/m87_ann0_guess.png]
The overall shape of the model looks okay, but the normalization is
not (since it has been adjusted by the volume-filling factor of the
intersection of the annulus and shell). The gap in the data around 2
keV is because we explicitly excluded this range from the fit.

Note

The Deproject class also provides
methods for plotting each annulus in a separate window, such as
plot_data()
and
plot_fit().

Fitting the data

The
fit()
method performs the full onion-skin deprojection (the output
is similar to the guess method, with the addition of
parameters being frozen as each annulus is processed):

>>> onion = dep.fit()
Fitting annulus 19 dataset: 19
Dataset = 19
...
Reduced statistic = 1.07869
Change in statistic = 1.29468e-08
 xsmekal_19.kT 2.748 +/- 0.0551534
 xsmekal_19.Abundanc 0.429758 +/- 0.0350507
 xsmekal_19.norm 0.249707 +/- 0.00416351
Freezing xswabs_19
Freezing xsmekal_19
Fitting annulus 18 dataset: 18
Dataset = 18
...
Reduced statistic = 1.00366
Change in statistic = 13444.5
 xsmekal_18.kT 2.41033 +/- 0.274986
 xsmekal_18.Abundanc 0.375824 +/- 0.136926
 xsmekal_18.norm 0.0551815 +/- 0.00441495
Freezing xswabs_18
Freezing xsmekal_18
...
Freezing xswabs_1
Freezing xsmekal_1
Fitting annulus 0 dataset: 0
Dataset = 0
...
Reduced statistic = 2.72222
Change in statistic = 12115.6
 xsmekal_0.kT 1.63329 +/- 0.0278325
 xsmekal_0.Abundanc 1.1217 +/- 0.094871
 xsmekal_0.norm 5.7067 +/- 0.262766
Change in statistic = 13699.6
 xsmekal_0.kT 1.64884 +/- 0.0242336
 xsmekal_0.Abundanc 1.14629 +/- 0.0903398
 xsmekal_0.norm 5.68824 +/- 0.245884
...

The fit to the central annulus (dataset 0) now looks like:

>>> plot_fit_delchi(0)

[image: ../_images/m87_ann0_fit.png]
After the fit process each shell model has an association normalization that
can be used to calculate the densities. This is where the source angular
diameter distance is used. If the angular diameter distance is not set
explicitly in the original dep = Deproject(...) command then it is
calculated automatically from the source redshift and an assumed Cosmology,
which if not set is taken to be the
Planck15 model [http://docs.astropy.org/en/stable/cosmology/index.html#built-in-cosmologies]
provided by the
astropy.cosmology [http://docs.astropy.org/en/stable/cosmology/]
module.

One can examine the values being used as follows (note that the
angdist attribute is an
Astropy Quantity [http://docs.astropy.org/en/stable/units/]):

>>> print("z={:.5f} angdist={}".format(dep.redshift, dep.angdist))
z=0.00423 angdist=16.0 Mpc

New in version 0.2.0 is the behavior of the fit method, which now
returns an Astropy table which tabulates the fit results as a function
of annulus. This includes the electron density, which can also be
retrieved with
get_density().
The fit results can also be retrieved with the
get_fit_results()
method.

>>> print(onion)
annulus rlo_ang rhi_ang ... xsmekal.norm density
 arcsec arcsec ... 1 / cm3
------- ------- ------- ... ------------------- --------------------
 0 14.76 29.52 ... 5.6882389946381275 0.1100953546292787
 1 29.52 44.28 ... 2.8089409208987233 0.07736622021374819
 2 44.28 59.04 ... 0.814017947154132 0.04164827967805805
 3 59.04 73.8 ... 0.6184339453006981 0.03630168106524076
 4 73.8 88.56 ... 0.2985327157676323 0.025221797991301052
 5 88.56 103.32 ... 0.22395312678845017 0.021845331641349316

 13 206.64 221.4 ... 0.07212121560592619 0.012396857131392835
 14 221.4 236.16 ... 0.08384338967492334 0.01336640115325031
 15 236.16 250.92 ... 0.07104455447410102 0.012303975980575187
 16 250.92 265.68 ... 0.08720295254137615 0.013631563529090736
 17 265.68 280.44 ... 0.09192970392746878 0.013996131292837352
 18 280.44 295.2 ... 0.05518150227052414 0.010843683594144967
 19 295.2 309.96 ... 0.24970680803387219 0.023067220584935984
Length = 20 rows

Inspecting the results

The electron density can be retrieved directly from the fit results,
with the
get_density()
method:

>>> print(dep.get_density())
[0.11009535 0.07736622 0.04164828 0.03630168 0.0252218 0.02184533
 0.01525456 0.01224972 0.01942528 0.01936785 0.01905983 0.01568478
 0.01405426 0.01239686 0.0133664 0.01230398 0.01363156 0.01399613
 0.01084368 0.02306722] 1 / cm3

or plotted using
density_plot():

>>> dep.density_plot()

[image: ../_images/m87_density.png]
The temperature profile from the deprojection can be plotted using
par_plot():

>>> dep.par_plot('xsmekal.kt')

[image: ../_images/m87_temperature.png]
The unphysical temperature oscillations seen here highlights a known issue
with this analysis method (e.g. Russell, Sanders, & Fabian 2008 [https://ui.adsabs.harvard.edu/?#abs/2008MNRAS.390.1207R]).

It can also be instructive to look at various results from the fit,
such as the reduced statistic for each annulus (as will be shown
below, there are
fit_plot(),
conf_plot(),
and
covar_plot() variants):

>>> dep.fit_plot('rstat')

[image: ../_images/m87_rstat.png]

Error analysis

Errors can also be calculated, on both the model parameters and the
derived densities, with either the
conf()
or
covar()
methods. These
apply the confidence and covariance error-estimation routines from
Sherpa using the same onion-skin model used for the fit, and are new
in version 0.2.0. In this example we use the covariance version, since
it is generally faster, but confidence is the recommended routine as it
is more robust (and calculates asymmetric errors):

>>> errs = dep.covar()

As with the fit method, both conf and covar return the results
as an Astropy table. These can also be retrieved with the
get_conf_results()
or
get_covar_results()
methods. The columns depend on the command (i.e. fit or error results):

>>> print(errs)
annulus rlo_ang rhi_ang ... density_lo density_hi
 arcsec arcsec ... 1 / cm3 1 / cm3
------- ------- ------- ... ----------------------- ----------------------
 0 14.76 29.52 ... -0.0023299300992805777 0.0022816336635322065
 1 29.52 44.28 ... -0.0015878693875514133 0.0015559288091097495
 2 44.28 59.04 ... -0.0014852395638492444 0.0014340671599212054
 3 59.04 73.8 ... -0.0011539611188859725 0.00111839214283211
 4 73.8 88.56 ... -0.001166653616914693 0.001115024462355424
 5 88.56 103.32 ... -0.0010421595234548324 0.0009946565126391325

 13 206.64 221.4 ... -0.0005679816551559976 0.0005430748019680798
 14 221.4 236.16 ... -0.00048083556526315463 0.00046412880973027357
 15 236.16 250.92 ... -0.0004951659664768401 0.00047599490797040934
 16 250.92 265.68 ... -0.0004031089363366082 0.0003915259159180066
 17 265.68 280.44 ... -0.0003647519140328147 0.00035548459401609986
 18 280.44 295.2 ... nan nan
 19 295.2 309.96 ... -0.00019648511719753958 0.00019482554589523096
Length = 20 rows

Note

With this set of data, the covariance method failed to calculate errors
for the parameters of the last-but one shell, which is indicated by
the presence of NaN values in the error columns.

The fit or error results can be plotted as a function of radius with the
fit_plot(),
conf_plot(),
and
covar_plot()
methods (the latter two include error bars). For example, the
following plot mixes these plots with Matplotlib commands to
compare the temperature and abundance profiles:

>>> plt.subplot(2, 1, 1)
>>> dep.covar_plot('xsmekal.kt', clearwindow=False)
>>> plt.xlabel('')
>>> plt.subplot(2, 1, 2)
>>> dep.covar_plot('xsmekal.abundanc', clearwindow=False)
>>> plt.subplots_adjust(hspace=0.3)

[image: ../_images/m87_temperature_abundance.png]
The derived density profile, along with errors, can also be
displayed (the X axis is displayed using angular units rather
than as a length):

>>> dep.covar_plot('density', units='arcmin')

[image: ../_images/m87_density_errs.png]

Comparing results

In the images below the deproject results (blue) are compared with
values (gray boxes) from an independent onion-peeling analysis by P. Nulsen
using a custom perl script to generate XSPEC [https://heasarc.gsfc.nasa.gov/docs/xanadu/xspec/] model definition and fit
commands. These plots were created with the plot_m87.py script in
the examples directory. The agreement is good (note that the version
of XSPEC used for the two cases does not match):

[image: ../_images/m87_compare_density.png]
[image: ../_images/m87_compare_temperature.png]

Combining shells

We now look at tie-ing parameters from different annuli (that is,
forcing the temperature or abundance of one shell to be the
same as a neighbouring shell), which is a technique used to
try and reduce the “ringing” that can be seen in deprojected
data (e.g. Russell, Sanders, & Fabian 2008 [https://ui.adsabs.harvard.edu/?#abs/2008MNRAS.390.1207R] and seen in
the temperature profile of the M87 data).
Sherpa supports complicated links between model parameters
with the link [https://sherpa.readthedocs.io/en/latest/ui/api/sherpa.astro.ui.link.html] and unlink [https://sherpa.readthedocs.io/en/latest/ui/api/sherpa.astro.ui.unlink.html] functions, and the
Deproject class provides helper methods -
tie_par()
and
untie_par()
- that allows you to easily tie together annuli.

Starting from where the M87 example left off,
we have:

[image: ../_images/m87_temperature_abundance.png]
The get_shells()
method lists the current set of annuli, and show that there
are currently no grouped (or tied-together) annuli:

>>> dep.get_shells()
[{'annuli': [19], 'dataids': [19]},
 {'annuli': [18], 'dataids': [18]},
 {'annuli': [17], 'dataids': [17]},
 {'annuli': [16], 'dataids': [16]},
 {'annuli': [15], 'dataids': [15]},
 {'annuli': [14], 'dataids': [14]},
 {'annuli': [13], 'dataids': [13]},
 {'annuli': [12], 'dataids': [12]},
 {'annuli': [11], 'dataids': [11]},
 {'annuli': [10], 'dataids': [10]},
 {'annuli': [9], 'dataids': [9]},
 {'annuli': [8], 'dataids': [8]},
 {'annuli': [7], 'dataids': [7]},
 {'annuli': [6], 'dataids': [6]},
 {'annuli': [5], 'dataids': [5]},
 {'annuli': [4], 'dataids': [4]},
 {'annuli': [3], 'dataids': [3]},
 {'annuli': [2], 'dataids': [2]},
 {'annuli': [1], 'dataids': [1]},
 {'annuli': [0], 'dataids': [0]}]

For this example we are going to see what happens when we
tie together the temperature and abundance of annulus 17 and 18
(the inner-most annulus is numbered 0, the outer-most is 19 in this
example).

>>> dep.tie_par('xsmekal.kt', 17, 18)
Tying xsmekal_18.kT to xsmekal_17.kT
>>> dep.tie_par('xsmekal.abundanc', 17, 18)
Tying xsmekal_18.Abundanc to xsmekal_17.Abundanc

Looking at the first few elements of the list returned by get_shells
shows us that the two annuli have now been grouped together. This
means that when a fit is run then these two annuli will be
fit simultaneously.

>>> dep.get_shells()[0:5]
[{'annuli': [19], 'dataids': [19]},
 {'annuli': [17, 18], 'dataids': [17, 18]},
 {'annuli': [16], 'dataids': [16]},
 {'annuli': [15], 'dataids': [15]},
 {'annuli': [14], 'dataids': [14]}]

Since the model values for the 18th annulus have been changed, the
data needs to be re-fit. The screen output is slightly different,
as highlighted below, to reflect this new grouping:

>>> dep.fit()
Note: annuli have been tied together
Fitting annulus 19 dataset: 19
Dataset = 19
...
Freezing xswabs_19
Freezing xsmekal_19
Fitting annuli [17, 18] datasets: [17, 18]
Datasets = 17, 18
Method = levmar
Statistic = chi2xspecvar
Initial fit statistic = 469.803
Final fit statistic = 447.963 at function evaluation 16
Data points = 439
Degrees of freedom = 435
Probability [Q-value] = 0.323566
Reduced statistic = 1.0298
Change in statistic = 21.8398
 xsmekal_17.kT 2.64505 +/- 0.0986876
 xsmekal_17.Abundanc 0.520943 +/- 0.068338
 xsmekal_17.norm 0.0960039 +/- 0.00370363
 xsmekal_18.norm 0.0516096 +/- 0.00232468
Freezing xswabs_17
Freezing xsmekal_17
Freezing xswabs_18
Freezing xsmekal_18
Fitting annulus 16 dataset: 16
...

The table returned by fit()
and get_fit_results()
still contains 20 rows, since each annulus has its own row:

>>> tied = dep.get_fit_results()
>>> len(tied)
20

Looking at the outermost annuli, we can see that the temperature
and abundance values are the same:

>>> print(tied['xsmekal.kT'][16:])
 xsmekal.kT

2.5470334673573936
 2.645045455995055
 2.645045455995055
2.7480050952727346
>>> print(tied['xsmekal.Abundanc'][16:])
 xsmekal.Abundanc

0.24424232427701525
 0.5209430839965413
 0.5209430839965413
 0.4297577517591726

Note

The field names in the table are case sensitive - that is, you
have to say xsmekal.kT and not xsmekal.kt - unlike the
Sherpa parameter interface.

The results can be compared to the original, such as in the
following plot, which shows that the temperature profile hasn’t
changed significantly in the core, but some of the oscillations
at large radii have been reduced (the black circles show the
temperature values from the original fit):

>>> dep.fit_plot('xsmekal.kt', units='pc')
>>> rmid = (onion['rlo_phys'] + onion['rhi_phys']) / 2
>>> plt.scatter(rmid.to(u.pc), onion['xsmekal.kT', c='k')

[image: ../_images/m87_temperature_tied_comparison.png]

Note

As the X-axis of the plot created by
fit_plot() is in pc, the
rmid value is expliclty converted to these units before
plotting.

The results parameter of fit_plot could have been set
to the variable onion to display the results of the previous fit,
but there is no easy way to change the color of the points.

More shells could be tied together to try and further
reduce the oscillations, or errors calculated, with either
conf()
or
covar().

The parameter ties can be removed with
untie_par():

>>> dep.untie_par('xsmekal.kt', 18)
Untying xsmekal_18.kT
>>> dep.untie_par('xsmekal.abundanc', 18)
Untying xsmekal_18.Abundanc
>>> dep.get_shells()[0:4]
[{'annuli': [19], 'dataids': [19]},
 {'annuli': [18], 'dataids': [18]},
 {'annuli': [17], 'dataids': [17]},
 {'annuli': [16], 'dataids': [16]}]

Multiple datasets per annulus (3C186)

A second example illustrates the use of deproject for a multi-obsid
observation of 3C186. It also shows how to set a background model for fitting
with the cstat statistic. The extracted spectral data for this example are
not yet publicly available, but were used in Siemiginowska et al. 2010 [https://ui.adsabs.harvard.edu/#abs/2010ApJ...722..102S]:

The script starts with some setup:

>>> import deproject

>>> radii = ('2.5', '6', '17')
>>> dep = deproject.Deproject(radii=[float(x) for x in radii])

>>> set_method("levmar")
>>> set_stat("cstat")

Now we read in the data as before with dep.load_pha(). The only
difference to the M87 example
is the additional loop over the obsids. The dep.load_pha() function
automatically extracts the obsid (the identifier used to
discriminate Chandra observations) from the file header. This is used later in
the case of setting a background model.

>>> obsids = (9407, 9774, 9775, 9408)
>>> for ann in range(len(radii) -1):
... for obsid in obsids:
... dep.load_pha('3c186/%d/ellipse%s-%s.pi' % (obsid, radii[ann], radii[ann+1]), annulus=ann)

Create and configure the source model expression as usual:

>>> dep.set_source('xsphabs*xsapec')
>>> dep.ignore(None, 0.5)
>>> dep.ignore(7, None)
>>> dep.freeze("xsphabs.nh")

>>> dep.set_par('xsapec.redshift', 1.06)
>>> dep.set_par('xsphabs.nh', 0.0564)

Set the background model (here we use the IPython %run magic command
to evaluate the commands in the file acis-s-bkg.py):

>>> %run acis-s-bkg.py
>>> acis_s_bkg = get_bkg_source()
>>> dep.set_bkg_model(acis_s_bkg)

Fit the projection model:

>>> dep.fit()

The deproject.deproject module

Deproject 2-d circular annular spectra to 3-d object properties.

This module implements the “onion-skin” approach popular in X-ray
analysis of galaxy clusters and groups to estimate the three-dimensional
temperature, metallicity, and density distributions of an optically-thin
plasma from the observed (projected) two-dimensional data, arranged in
concentric circular annuli.

	Copyright

	Smithsonian Astrophysical Observatory (2009, 2019)

	Author

	Tom Aldcroft (taldcroft@cfa.harvard.edu), Douglas Burke (dburke@cfa.harvard.edu)

Classes

	Deproject(radii[, theta, angdist, cosmology])

	Support deprojecting a set of spectra (2-d concentric circular annuli).

Functions

	deproject_from_xflt(pat, rscale[, rinner, …])

	Set up the projection object from XFLT keywords in the PHA files.

Class Inheritance Diagram

 Inheritance diagram of Deproject

Deproject

	
class deproject.deproject.Deproject(radii, theta=<Quantity 360. deg>, angdist=None, cosmology=None)

	Bases: deproject.specstack.SpecStack

Support deprojecting a set of spectra (2-d concentric circular annuli).

	Parameters

	
	radii (AstroPy Quantity representing an angle on the sky) – The edges of each annulus, which must be circular, concentric,
in ascending order, and >= 0. If there are n annuli then there are n+1
radii, since the start and end of the sequence must be given.
The units are expected to be arcsec, arcminute, or degree.

	theta (AstroPy Quantity (scalar or array) representing an angle) – The “fill factor” of each annulus, given by the azimuthal coverage
of the shell in degrees. The value can be a scalar, so the same
value is used for all annuli, or a sequence with a length
matching the number of annuli. Since the annulus assumes circular
symmetry there is no need to define the starting point of the
measurement, for cases when the value is less than 360 degrees.

	angdist (None or AstroPy.Quantity, optional) – The angular-diameter distance to the source. If not given then
it is calculated using the source redshift along with the
cosmology attribute.

	cosmology (None or astropy.cosmology object, optional) – The cosmology used to convert redshift to an angular-diameter
distance. This is used when angdist is None. If cosmology
is None then the astropy.cosmology.Planck15 Cosmology
object is used.

Examples

The following highly-simplified example fits a deprojected model
to data from three annuli - ann1.pi, ann2.pi, and ann3.pi - and
also calculates errors on the parameters using the confidence
method:

>>> dep = Deproject([0, 10, 40, 100] * u.arcsec)
>>> dep.load_pha('ann1.pi', 0)
>>> dep.load_pha('ann2.pi', 1)
>>> dep.load_pha('ann3.pi', 2)
>>> dep.subtract()
>>> dep.notice(0.5, 7.0)
>>> dep.set_source('xsphabs * xsapec')
>>> dep.set_par('xsapec.redshift', 0.23)
>>> dep.thaw('xsapec.abundanc')
>>> dep.set_par('xsphabs.nh', 0.087)
>>> dep.freeze('xsphabs.nh')
>>> dep.fit()
>>> dep.fit_plot('rstat')
>>> errs = dep.conf()
>>> dep.conf_plot('density')

Attributes Summary

	angdist

	Angular size distance (an AstroPy quantity)

	cosmology

	Return the cosmology object (only used if angdist not set)

	datasets

	

	n_datasets

	How many datasets are registered?

	redshift

	Source redshift

Methods Summary

	conf()

	Estimate errors using confidence, using the “onion-peeling” method.

	conf_plot(field[, results, units, xlog, …])

	Plot up the confidence errors as a function of radius.

	covar()

	Estimate errors using covariance, using the “onion-peeling” method.

	covar_plot(field[, results, units, xlog, …])

	Plot up the covariance errors as a function of radius.

	density_plot([units, xlog, ylog, overplot, …])

	Plot up the electron density as a function of radius.

	dummyfunc(*args, **kwargs)

	

	find_norm(shell)

	Return the normalization value for the given shell.

	find_parval(parname)

	Return the value of the first parameter matching the name.

	fit()

	Fit the data using the “onion-peeling” method.

	fit_plot(field[, results, units, xlog, …])

	Plot up the fit results as a function of radius.

	freeze(par)

	Freeze the given parameter in each shell.

	get_conf_results()

	What are the conf results, per annulus?

	get_covar_results()

	What are the covar results, per annulus?

	get_density()

	Calculate the electron density for each shell.

	get_fit_results()

	What are the fit results, per annulus?

	get_par(par)

	Return the parameter value for each shell.

	get_radii([units])

	What are the radii of the shells?

	get_shells()

	How are the annuli grouped?

	group(*args)

	Apply the grouping for each data set.

	guess()

	Guess the starting point by fitting the projected data.

	ignore(*args)

	Apply Sherpa ignore command to each dataset.

	load_pha(specfile, annulus)

	Load a pha file and add to the datasets for stacked analysis.

	notice(*args)

	Apply Sherpa notice command to each dataset.

	par_plot(par[, units, xlog, ylog, overplot, …])

	Plot up the parameter as a function of radius.

	plot_arf(*args, **kwargs)

	

	plot_bkg(*args, **kwargs)

	

	plot_bkg_chisqr(*args, **kwargs)

	

	plot_bkg_delchi(*args, **kwargs)

	

	plot_bkg_fit(*args, **kwargs)

	

	plot_bkg_fit_delchi(*args, **kwargs)

	

	plot_bkg_fit_resid(*args, **kwargs)

	

	plot_bkg_model(*args, **kwargs)

	

	plot_bkg_ratio(*args, **kwargs)

	

	plot_bkg_resid(*args, **kwargs)

	

	plot_bkg_source(*args, **kwargs)

	

	plot_bkg_unconvolved(*args, **kwargs)

	

	plot_chisqr(*args, **kwargs)

	

	plot_data(*args, **kwargs)

	

	plot_delchi(*args, **kwargs)

	

	plot_fit(*args, **kwargs)

	

	plot_fit_delchi(*args, **kwargs)

	

	plot_fit_resid(*args, **kwargs)

	

	plot_model(*args, **kwargs)

	

	plot_order(*args, **kwargs)

	

	plot_psf(*args, **kwargs)

	

	plot_ratio(*args, **kwargs)

	

	plot_resid(*args, **kwargs)

	

	plot_source(*args, **kwargs)

	

	print_window(*args, **kwargs)

	Create a hardcopy version of each plot window.

	set_bkg_model(bkgmodel)

	Create a background model for each annulus.

	set_par(par, val)

	Set the parameter value in each shell.

	set_source([srcmodel])

	Create a source model for each annulus.

	subtract(*args)

	Subtract the background from each dataset.

	thaw(par)

	Thaw the given parameter in each shell.

	tie_par(par, base, *others)

	Tie parameters in one or more shells to the base shell.

	ungroup(*args)

	Turn off the grouping for each data set.

	unsubtract(*args)

	Un-subtract the background from each dataset.

	untie_par(par, *others)

	Remove the parameter tie/link in the shell.

Attributes Documentation

	
angdist

	Angular size distance (an AstroPy quantity)

	
cosmology

	Return the cosmology object (only used if angdist not set)

	
datasets = None

	

	
n_datasets

	How many datasets are registered?

This is not the same as the number of annuli.

	Returns

	ndata – The number of datasets.

	Return type

	int

	
redshift

	Source redshift

Methods Documentation

	
conf()

	Estimate errors using confidence, using the “onion-peeling” method.

It is assumed that fit has been called. The results can also be
retrieved with get_conf_results.

	Returns

	errors – This records per-annulus data, such as the inner and outer
radius (rlo_ang, rhi_ang, rlo_phys, rhi_phys), the
sigma and percent values, and parameter results (accessed
using <model name>.<par name>, <model name>.<par name>_lo,
and <model name>.<par name>_hi syntax, where the match is
case sensitive).

	Return type

	astropy.table.Table instance

See also

covar(), fit(), get_conf_results(), conf_plot()

Examples

Run a fit and then error analysis, then plot up the abundance
against temperature values including the error bars. Note that
the Matplotlib errorbar routine requires “positive” error values
whereas the <param>_lo values are negative, hence they are
negated in the creation of dkt and dabund:

>>> dep.fit()
>>> errs = dep.conf()
>>> kt, abund = errs['xsapec.kT'], errs['xsapec.Abundanc']
>>> ktlo, kthi = errs['xsapec.kT_lo'], errs['xsapec.kT_hi']
>>> ablo, abhi = errs['xsapec.Abundanc_lo'], errs['xsapec.Abundanc_hi']
>>> dkt = np.vstack((-ktlo, kthi))
>>> dabund = np.vstack((-ablo, abhi))
>>> plt.clf()
>>> plt.errorbar(kt, abund, xerr=dkt, yerr=dabund, fmt='.')

Plot up the temperature distibution as a function of radius,
including the error bars calculated by the conf routine:

>>> dep.fit()
>>> dep.conf()
>>> dep.conf_plot('xsmekal.kt')

	
conf_plot(field, results=None, units='kpc', xlog=True, ylog=False, overplot=False, clearwindow=True)

	Plot up the confidence errors as a function of radius.

This method can be used to plot up the last conf results or
a previously-stored set. Any error bars are shown at the
scale they were calculated (as given by the sigma and
percent columns of the results).

	Parameters

	
	field (str) – The column to plot from the fit results (the match is case
insensitive).

	results (None or astropy.table.Table instance) – The return value from the conf or get_conf_results
methods.

	units (str or astropy.units.Unit, optional) – The X-axis units (a length or angle, such as ‘Mpc’ or
‘arcsec’, where the case is important).

	xlog (bool, optional) – Should the x axis be drawn with a log scale (default True)?

	ylog (bool, optional) – Should the y axis be drawn with a log scale (default False)?

	overplot (bool, optional) – Clear the plot or add to existing plot?

	clearwindow (bool, optional) – How does this interact with overplot?

See also

fit(), get_conf_results(), fit_plot(), covar_plot(), density_plot(), par_plot()

Notes

Error bars are included on the dependent axis if the results
contain columns that match the requested field with suffixes
of ‘_lo’ and ‘_hi’. These error bars are asymmetric, which is
different to covar_plot.

If a limit is missing (i.e. it is a NaN) then no error bar is
drawn. This can make it look like the error is very small.

Examples

Plot the temperature as a function of radius from the last
fit, including error bars:

>>> dep.conf_plot('xsapec.kt')

Plot the density with the radii labelled in arcminutes and the
density shown on a log scale:

>>> dep.conf_plot('density', units='arcmin', ylog=True)

Overplot the current conf results on those from a previous fit,
where conf1 was returned from the conf or get_conf_results
methods:

>>> dep.conf_plot('xsapec.abundanc', results=conf1)
>>> dep.conf_plot('xsapec.abundanc', overplot=True)

	
covar()

	Estimate errors using covariance, using the “onion-peeling” method.

It is assumed that fit has been called. The results can also be
retrieved with get_covar_results.

	Returns

	errors – This records per-annulus data, such as the inner and outer
radius (rlo_ang, rhi_ang, rlo_phys, rhi_phys), the
sigma and percent values, and parameter results (accessed
using <model name>.<par name>, <model name>.<par name>_lo,
and <model name>.<par name>_hi syntax, where the match is
case sensitive). The _lo and _hi values are symmetric for
covar, that is the _lo value will be the negative of the
_hi value.

	Return type

	astropy.table.Table instance

See also

conf(), fit(), get_covar_results(), covar_plot()

Examples

Run a fit and then error analysis, then plot up the abundance
against temperature values including the error bars. Since
the covariance routine returns symmetric error bars, the
<param>_hi values are used in the plot:

>>> dep.fit()
>>> errs = dep.covar()
>>> kt, abund = errs['xsapec.kT'], errs['xsapec.Abundanc']
>>> dkt = errs['xsapec.kT_hi']
>>> dabund = errs['xsapec.Abundanc_hi']
>>> plt.clf()
>>> plt.errorbar(kt, abund, xerr=dkt, yerr=dabund, fmt='.')

Plot up the temperature distibution as a function of radius,
including the error bars calculated by the covar routine:

>>> dep.fit()
>>> dep.covar()
>>> dep.covar_plot('xsmekal.kt')

	
covar_plot(field, results=None, units='kpc', xlog=True, ylog=False, overplot=False, clearwindow=True)

	Plot up the covariance errors as a function of radius.

This method can be used to plot up the last covar results or
a previously-stored set. Any error bars are shown at the
scale they were calculated (as given by the sigma and
percent columns of the results).

	Parameters

	
	field (str) – The column to plot from the fit results (the match is case
insensitive).

	results (None or astropy.table.Table instance) – The return value from the covar or get_covar_results
methods.

	units (str or astropy.units.Unit, optional) – The X-axis units (a length or angle, such as ‘Mpc’ or
‘arcsec’, where the case is important).

	xlog (bool, optional) – Should the x axis be drawn with a log scale (default True)?

	ylog (bool, optional) – Should the y axis be drawn with a log scale (default False)?

	overplot (bool, optional) – Clear the plot or add to existing plot?

	clearwindow (bool, optional) – How does this interact with overplot?

See also

fit(), get_covar_results(), fit_plot(), conf_plot(), density_plot(), par_plot()

Notes

Error bars are included on the dependent axis if the results
contain columns that match the requested field with the suffix
‘_hi’. The error bars are therefore symmetric, which is
different to conf_plot.

If a limit is missing (i.e. it is a NaN) then no error bar is
drawn. This can make it look like the error is very small.

Examples

Plot the temperature as a function of radius from the last
fit, including error bars:

>>> dep.covar_plot('xsapec.kt')

Plot the density with the radii labelled in arcminutes and the
density shown on a log scale:

>>> dep.covar_plot('density', units='arcmin', ylog=True)

Overplot the current covar results on those from a previous fit,
where covar1 was returned from the covar or
get_covar_results methods:

>>> dep.covar_plot('xsapec.abundanc', results=covar1)
>>> dep.covar_plot('xsapec.abundanc', overplot=True)

	
density_plot(units='kpc', xlog=True, ylog=True, overplot=False, clearwindow=True)

	Plot up the electron density as a function of radius.

The density is displayed with units of cm^-3. This plots up the
density calculated using the current normalization parameter
values. The fit_plot, conf_plot, and covar_plot
routines display the fit and error results for these parameters.

	Parameters

	
	units (str or astropy.units.Unit, optional) – The X-axis units (a length or angle, such as ‘Mpc’ or
‘arcsec’, where the case is important).

	xlog (bool, optional) – Should the x axis be drawn with a log scale (default True)?

	ylog (bool, optional) – Should the y axis be drawn with a log scale (default False)?

	overplot (bool, optional) – Clear the plot or add to existing plot?

	clearwindow (bool, optional) – How does this interact with overplot?

See also

conf_plot(), covar_plot(), fit_plot(), par_plot()

Examples

Plot the density as a function of radius.

>>> dep.density_plot()

Label the radii with units of arcminutes:

>>> dep.density_plot(units='arcmin')

	
dummyfunc(*args, **kwargs)

	

	
find_norm(shell)

	Return the normalization value for the given shell.

This is limited to XSPEC-style models, where the parameter is called
“norm”.

	Parameters

	shell (int) – The shell number.

	Returns

	norm – The normalization of the shell.

	Return type

	float

	Raises

	ValueError – If there is not one norm parameter for the shell.

See also

find_parval(), set_par()

	
find_parval(parname)

	Return the value of the first parameter matching the name.

	Parameters

	parname (str) – The parameter name. The case is ignored in the match, and the
first match is returned.

	Returns

	parval – The parameter value

	Return type

	float

	Raises

	ValueError – There is no match for the parameter.

See also

find_norm(), set_par()

Examples

>>> kt = dep.find_parval('kt')

	
fit()

	Fit the data using the “onion-peeling” method.

Unlike the normal Sherpa fit, this does not fit all the data
simultaneously, but instead fits the outermost annulus first,
then freezes its parameters and fits the annulus inside it,
repeating this until all annuli have been fit. At the end of
the fit all the parameters that were frozen are freed. The
results can also be retrieved with get_fit_results.

	Returns

	fits – This records per-annulus data, such as the inner and outer
radius (rlo_ang, rhi_ang, rlo_phys, rhi_phys), the
final fit statistic and change in fit statistic (statval and
dstatval), the reduced statistic and q value (as rstat
and qval) if appropriate, and the thawed parameter values
(accessed using <model name>.<par name> syntax, where the
match is case sensitive).

	Return type

	astropy.table.Table instance

See also

conf(), covar(), get_fit_results(), guess(), fit_plot()

Notes

If there are any tied parameters between annuli then these annuli
are combined together (fit simultaneously). The results from the
fits to each annulus can be retrieved after fit has been called
with the get_fit_results method.

The results have been separated out per annulus, even if several
annuli were combined in a fit due to tied parameters, and there is
no information in the returned structure to note this.

Examples

Fit the annuli using the onion-peeling approach, and then plot
up the reduced statistic for each dataset:

>>> res = dep.fit()
>>> plt.clf()
>>> rmid = 0.5 * (res['rlo_phys'] + res['rhi_phys'])
>>> plt.plot(rmid, res['rstat'])

Plot the temperature-abundance values per shell, color-coded
by annulus:

>>> plt.clf()
>>> plt.plot(res['xsapec.kT'], res['xsapec.Abundanc'],
... c=res['annulus'])
>>> plt.colorbar()
>>> plt.xlabel('kT')
>>> plt.ylabel('Abundance')

Plot up the temperature distibution as a function of radius
from the fit:

>>> dep.fit()
>>> dep.fit_plot('xsmekal.kt')

	
fit_plot(field, results=None, units='kpc', xlog=True, ylog=False, overplot=False, clearwindow=True)

	Plot up the fit results as a function of radius.

This method can be used to plot up the last fit results or
a previously-stored set. To include error bars on the
dependent values use the conf_plot or covar_plot methods.

	Parameters

	
	field (str) – The column to plot from the fit results (the match is case
insensitive).

	results (None or astropy.table.Table instance) – The return value from the fit or get_fit_results
methods.

	units (str or astropy.units.Unit, optional) – The X-axis units (a length or angle, such as ‘Mpc’ or
‘arcsec’, where the case is important).

	xlog (bool, optional) – Should the x axis be drawn with a log scale (default True)?

	ylog (bool, optional) – Should the y axis be drawn with a log scale (default False)?

	overplot (bool, optional) – Clear the plot or add to existing plot?

	clearwindow (bool, optional) – How does this interact with overplot?

See also

fit(), get_fit_results(), conf_plot(), covar_plot(), density_plot(), par_plot()

Examples

Plot the temperature as a function of radius from the last
fit:

>>> dep.fit_plot('xsapec.kt')

Plot the reduced fit statistic from the last fit:

>>> dep.fit_plot('rstat')

Plot the density with the radii labelled in arcminutes and the
density shown on a log scale:

>>> dep.fit_plot('density', units='arcmin', ylog=True)

Overplot the current fit results on those from a previous fit,
where fit1 was returned from the fit or get_fit_results
methods:

>>> dep.fit_plot('xsapec.abundanc', results=fit1)
>>> dep.fit_plot('xsapec.abundanc', overplot=True)

	
freeze(par)

	Freeze the given parameter in each shell.

	Parameters

	par (str) – The parameter name, specified as <model_type>.<par_name>

See also

thaw(), tie_par(), untie_par()

Examples

>>> dep.freeze('clus.abundanc')

	
get_conf_results()

	What are the conf results, per annulus?

This returns the fit result for each annulus from the last time
that the conf method was called. It does not check to see
if anything has changed since the last conf call (e.g.
parameters being tied together or untied, or a manual fit
to a shell). Note that get_shells should be used to find out
if the shells were grouped together (although this can be
reconstructed from the datasets field of each ErrorEstResults
instance).

	Returns

	errors – This records per-annulus data, such as the inner and outer
radius (rlo_ang, rhi_ang, rlo_phys, rhi_phys), the
sigma and percent values, and parameter results (accessed
using <model name>.<par name>, <model name>.<par name>_lo,
and <model name>.<par name>_hi syntax, where the match is
case sensitive).

	Return type

	astropy.table.Table instance

See also

fit(), get_covar_results(), get_fit_results(), get_radii(), get_shells(), conf_plot()

	
get_covar_results()

	What are the covar results, per annulus?

This returns the fit result for each annulus from the last time
that the covar method was called. It does not check to see
if anything has changed since the last covar call (e.g.
parameters being tied together or untied, or a manual fit
to a shell). Note that get_shells should be used to find out
if the shells were grouped together.

	Returns

	errors – This records per-annulus data, such as the inner and outer
radius (rlo_ang, rhi_ang, rlo_phys, rhi_phys), the
sigma and percent values, and parameter results (accessed
using <model name>.<par name>, <model name>.<par name>_lo,
and <model name>.<par name>_hi syntax, where the match is
case sensitive).

	Return type

	astropy.table.Table instance

See also

fit(), get_conf_results(), get_fit_results(), get_radii(), get_shells(), covar_plot()

	
get_density()

	Calculate the electron density for each shell.

Convert the model normalzations (assumed to match the standard
definition for XSPEC thermal-plasma models) for each shell.

	Returns

	dens – The densities calculated for each shell, in units of cm^-3.

	Return type

	astropy.units.quantity.Quantity instance

See also

find_norm()

Notes

The electron density is taken to be:

n_e^2 = norm * 4*pi * DA^2 * 1e14 * (1+z)^2 / volume * ne_nh_ratio

where:

norm = model normalization from sherpa fit
DA = angular size distance (cm)
volume = volume (cm^3)
ne_nh_ratio = 1.18

The model components for each volume element (the intersection of the
annular cylinder a with the spherical shell s) are multiplied
by a volume normalization:

vol_norm[s,a] = volume[s,a] / v_sphere
v_sphere = volume of sphere enclosing outer annulus

With this convention the volume used in calculating the electron
density is simply v_sphere.

	
get_fit_results()

	What are the fit results, per annulus?

This returns the fit result for each annulus from the last time
that the fit method was called. It does not check to see
if anything has changed since the last fit call (e.g.
parameters being tied together or untied, or a manual fit
to a shell). Note that get_shells should be used to find out
if the shells were grouped together.

	Returns

	fits – This records per-annulus data, such as the inner and outer
radius (rlo_ang, rhi_ang, rlo_phys, rhi_phys), the
final fit statistic and change in fit statistic (statval and
dstatval), the reduced statistic and q value (as rstat
and qval) if appropriate, and the thawed parameter values
(accessed using <model name>.<par name> syntax, where the
match is case sensitive).

	Return type

	astropy.table.Table instance

See also

fit(), get_conf_results(), get_covar_results(), get_radii(), get_shells(), fit_plot()

	
get_par(par)

	Return the parameter value for each shell.

	Parameters

	par (str) – The parameter name, specified as <model_type>.<par_name>

	Returns

	vals – The parameter values, in shell order.

	Return type

	ndarray

See also

find_parval(), find_norm(), set_par()

Examples

>>> kts = dep.get_par('xsapec.kt')

	
get_radii(units='arcsec')

	What are the radii of the shells?

Return the inner and outer edge of each annulus, in the given
units. Physical units (e.g. ‘kpc’) can only be used if a redshift or
angular-diameter distance has been set. This does not apply the
grouping that get_shells does.

	Parameters

	units (str or astropy.units.Unit, optional) – The name of the units to use for the returned radii. They must
be an angle - such as ‘arcsec’ - or a length - such as ‘kpc’
or ‘Mpc’ (case is important).

See also

get_shells()

	Returns

	rlo, rhi – The inner and outer radius for each annulus.

	Return type

	astropy.units.Quantity, astropy.units.Quantity

	
get_shells()

	How are the annuli grouped?

An annulus may have multiple data sets associated with it, but
it may also be linked to other annuli due to tied parameters.
The return value is per group, in the ordering needed for
the outside-to-inside onion skin fit, where the keys for
the dictionary are ‘annuli’ and ‘dataids’.

	Returns

	groups – Each dictionary has the keys ‘annuli’ and ‘dataids’, and
lists the annuli and data identifiers that are fit together.
The ordering matches that of the onion-skin approach, so
the outermost group first.

	Return type

	list of dicts

See also

get_radii(), tie_par()

Examples

For a 3-annulus deprojection where there are no parameter ties
to combine annului:

>>> dep.get_shells()
[{'annuli': [2], 'dataids': [2]},
 {'annuli': [1], 'dataids': [1]},
 {'annuli': [0], 'dataids': [0]}]

After tie-ing the abundance parameter for the outer two shells,
there are now two groups of annuli:

>>> dep.tie_par('xsapec.abundanc', 1, 2)
Tying xsapec_2.Abundanc to xsapec_1.Abundanc
>>> dep.get_shells()
[{'annuli': [1, 2], 'dataids': [1, 2]},
 {'annuli': [0], 'dataids': [0]}]

	
group(*args)

	Apply the grouping for each data set.

See also

ungroup()

Examples

>>> dep.group()

	
guess()

	Guess the starting point by fitting the projected data.

Use a fitting scheme - based on the suggestion in the XSPEC projct
documention - to estimate the starting position of the fit (the
initial fit parameters). This can be useful since it can reduce
the time taken to fit the deprojected data and help avoid
the deprojection from getting stuck in a local minimum.

See also

fit()

Notes

Each annulus, from outer to inner, is fit individually, ignoring
the contribution from any outer annulus. After the fit, the
model normalisation is corrected for the volume-filling factor of
the annulus. If there are any tied parameters between annuli then
these annuli are combined together (fit simultaneously).

Unlike the Sherpa guess function, this does not change the
limits of any parameter.

	Possible improvements include:

	
	re-normalize each spectrum before fitting.

	transfer the model parameters of the inner-most shell in a
group to the next set of shells to fit.

	
ignore(*args)

	Apply Sherpa ignore command to each dataset.

The filter is applied to each data set separately.

See also

notice()

Examples

Restrict the analysis to those bins which fall in the range
0.5 to 7.0 keV, where the limits are not included in the
noticed range. The call to notice is used to clear any
existing filter.

>>> dep.notice(None, None)
>>> dep.ignore(None, 0.5)
>>> dep.ignore(7.0, None)

	
load_pha(specfile, annulus)

	Load a pha file and add to the datasets for stacked analysis.

It is required that datasets for all annuli are loaded before
the source model is created (to ensure that components are
created for each annulus).

	Parameters

	
	specfile (str or sherpa.astro.data.DataPHA object) – If a string, the name of the file containing the source spectrum,
which must be in PHA format (the data is expected to be extracted
on the PI column). If a DataPHA object, then this is used (and
is assumed to contain any needed background data).

	annulus (int) – The annulus number for the data.

	Returns

	dataid – The Sherpa dataset identifier used for this spectrum.

	Return type

	int

Examples

Load the data for four annuli from the files ‘ann1.pi’ to ‘ann4.pi’.

>>> dep.load_pha('ann1.pi', 0)
>>> dep.load_pha('ann2.pi', 1)
>>> dep.load_pha('ann3.pi', 2)
>>> dep.load_pha('ann4.pi', 3)

Load in the PHA files into Sherpa DataPHA objects, and then use
these objects:

>>> s1 = ui.unpack_pha('src1.pi')
>>> s2 = ui.unpack_pha('src2.pi')
>>> s3 = ui.unpack_pha('src3.pi')
>>> dep.load_pha(s1, 0)
>>> dep.load_pha(s2, 1)
>>> dep.load_pha(s3, 2)

	
notice(*args)

	Apply Sherpa notice command to each dataset.

The filter is applied to each data set separately.

See also

ignore()

Examples

Restrict the analysis to those bins which fall in the range
0.5 to 7.0 keV, where the limits are included in the noticed
range. The first call to notice is used to clear any
existing filter.

>>> dep.notice(None, None)
>>> dep.notice(0.5, 7.0)

	
par_plot(par, units='kpc', xlog=True, ylog=False, overplot=False, clearwindow=True)

	Plot up the parameter as a function of radius.

This plots up the current parameter values. The fit_plot,
conf_plot, and covar_plot routines display the fit
and error results for these parameters.

	Parameters

	
	par (str) – The parameter name, specified as <model_type>.<par_name>.

	units (str or astropy.units.Unit, optional) – The X-axis units (a length or angle, such as ‘Mpc’ or
‘arcsec’, where the case is important).

	xlog (bool, optional) – Should the x axis be drawn with a log scale (default True)?

	ylog (bool, optional) – Should the y axis be drawn with a log scale (default False)?

	overplot (bool, optional) – Clear the plot or add to existing plot?

	clearwindow (bool, optional) – How does this interact with overplot?

See also

conf_plot(), covar_plot(), density_plot(), fit_plot()

Examples

Plot the temperature as a function of radius.

>>> dep.par_plot('xsapec.kt')

Label the radii with units of arcminutes for the abundanc
parameter of the xsapec model:

>>> dep.par_plot('xsapec.abundanc', units='arcmin')

	
plot_arf(*args, **kwargs)

	

	
plot_bkg(*args, **kwargs)

	

	
plot_bkg_chisqr(*args, **kwargs)

	

	
plot_bkg_delchi(*args, **kwargs)

	

	
plot_bkg_fit(*args, **kwargs)

	

	
plot_bkg_fit_delchi(*args, **kwargs)

	

	
plot_bkg_fit_resid(*args, **kwargs)

	

	
plot_bkg_model(*args, **kwargs)

	

	
plot_bkg_ratio(*args, **kwargs)

	

	
plot_bkg_resid(*args, **kwargs)

	

	
plot_bkg_source(*args, **kwargs)

	

	
plot_bkg_unconvolved(*args, **kwargs)

	

	
plot_chisqr(*args, **kwargs)

	

	
plot_data(*args, **kwargs)

	

	
plot_delchi(*args, **kwargs)

	

	
plot_fit(*args, **kwargs)

	

	
plot_fit_delchi(*args, **kwargs)

	

	
plot_fit_resid(*args, **kwargs)

	

	
plot_model(*args, **kwargs)

	

	
plot_order(*args, **kwargs)

	

	
plot_psf(*args, **kwargs)

	

	
plot_ratio(*args, **kwargs)

	

	
plot_resid(*args, **kwargs)

	

	
plot_source(*args, **kwargs)

	

	
print_window(*args, **kwargs)

	Create a hardcopy version of each plot window.

	Parameters

	
	args – The arguments to be sent to the “create a hardcopy” routine
(print_window for ChIPS and savefig for Matplotlib).
The first argument, if given, is assumed to be the file name
and so will have the shell number added to it.

	kwargs – Keyword arguments for the call.

Notes

This is not guaranteed to work properly for Matplotlib.

Examples

Create hardcopy versions of the data plots, called “data0”,
“data1”, …

>>> dep.plot_data()
>>> dep.print_window('data')

	
set_bkg_model(bkgmodel)

	Create a background model for each annulus.

The background model is the same between the annuli, except that
a scaling factor is added for each annulus (to allow for
normalization uncertainities). The scaling factors are labelled
‘bkg_norm_<obsid>’, and at least one of these must be frozen
(otherwise it is likely to be degenerate with the background
normalization, causing difficulties for the optimiser).

	Parameters

	bkgmodel (model instance) – The background model expression applied to each annulus.
Unlike set_source this should be the actual model instance,
and not a string.

See also

set_source(), set_par()

Examples

Model the background with a single power-law component:

>>> dep.set_bkg_model(xspowerlaw.bpl)

	
set_par(par, val)

	Set the parameter value in each shell.

	Parameters

	
	par (str) – The parameter name, specified as <model_type>.<par_name>

	val (float) – The parameter value.

See also

get_par(), tie_par()

Examples

>>> dep.set_par('xsapec.abundanc', 0.25)

	
set_source(srcmodel='xsphabs*xsapec')

	Create a source model for each annulus.

Unlike the standard set_source command, this version just
uses the <model name>, not <model name>.<username>, since
the <username> is automatically created for users by appending
the annulus number to <model name>.

	Parameters

	srcmodel (str, optional) – The source model expression applied to each annulus.

See also

set_bkg_model(), set_par()

Notes

The data must have been read in for all the data before calling
this method (this matches Sherpa, where you can not call set_source
unless you have already loaded the data to fit).

Examples

The following two calls have the same result: model instances
called ‘xsphabs<annulus>’ and ‘xsapec<annulus>’ are created
for each annulus, and the source expression for the annulus
set to their multiplication:

>>> dep.set_source()
>>> dep.set_source('xsphabs * xsapec')

Use the XSPEC vapec model rather than the apec model to
represent the plasma emission:

>>> dep.set_source('xsphabs * xsvapec')

	
subtract(*args)

	Subtract the background from each dataset.

See also

unsubtract()

Examples

>>> dep.substract()

	
thaw(par)

	Thaw the given parameter in each shell.

	Parameters

	par (str) – The parameter name, specified as <model_type>.<par_name>

See also

freeze(), tie_par(), untie_par()

Examples

>>> dep.thaw('clus.abundanc')

	
tie_par(par, base, *others)

	Tie parameters in one or more shells to the base shell.

This is a limited form of the Sherpa ability to link parameters,
since it sets the parameter in the other shells to the same
value as the parameter in the base shell. More complex
situations will require direct calls to sherpa.astro.ui.link.

	Parameters

	
	par (str) – The parameter specifier, as <model_type>.<par_name>.

	base (int) – The base shell number.

	*others (scalar) – The shell, or shells to link to the base shell.

See also

set_par(), untie_par()

Examples

Tie the temperature and abundance parameters in shell 9 to that
in shell 8, so that any fits will set the shell 9 values to those
used in shell 8 (so reducing the number of free parameters in the
fit).

>>> dep.tie_par('xsapec.kt', 8, 9)
Tying xsapec_9.kT to xsapec_8.kT
>>> dep.tie_par('xsapec.abundanc', 8, 9)
Tying xsapec_9.Abundanc to xsapec_8.Abundanc

Tie three annuli together:

>>> dep.tie_par('xsapec.kt', 12, 13, 14)
Tying xsapec_13.kT to xsapec_12.kT
Tying xsapec_14.kT to xsapec_12.kT

	
ungroup(*args)

	Turn off the grouping for each data set.

See also

group()

Examples

>>> dep.ungroup()

	
unsubtract(*args)

	Un-subtract the background from each dataset.

This can be useful when you want to compare the results to
the “wstat” stat (a Poisson-based stat which includes the
background data as a component and provides a goodness-of-fit
estimate).

See also

subtract()

Examples

>>> dep.unsubstract()

	
untie_par(par, *others)

	Remove the parameter tie/link in the shell.

This is intended to remove links between shells created by tie_par,
but will remove any links created by sherpa.astro.ui.link.

	Parameters

	
	par (str) – The parameter specifier, as <model_type>.<par_name>.

	*others (scalar) – The shell, or shells to un-tie/unlink.

See also

tie_par()

Notes

It is safe to call on a parameter that is not tied or linked
to another parameter.

Examples

Untie the abundance parameter in shell 9; that is, it is now free
to vary independently in a fit.

>>> dep.untie_par('xsapec.abundanc', 9)
Untying xsapec_9.Abundanc

Untie multiple annuli:

>>> dep.untie_par('xsmekal.kt', 13, 14)
Untying xsmekal_13.kT
Untying xsmekal_14.kT

deproject_from_xflt

	
deproject.deproject.deproject_from_xflt(pat, rscale, rinner=0, angdist=None, cosmology=None)

	Set up the projection object from XFLT keywords in the PHA files.

When using the XSPEC projct model, values are read from XFLT keywords
(as used by the XSPEC deprojection code 1) rather than being specified
manually. This function creates a Deproject object and loads in a set
of PHA files matching a pattern, using the XFLT keywords to set radii
and theta values. The annuli must be circular.

	Parameters

	
	pat (str) – The pattern representing the files to read in. If the stk module,
provided by CIAO, is available then CIAO stack syntax 2 can be
used. The order of the files does not matter, but it is currently
assumed that there is only one file per annulus.

	rscale (AstroPy quantity) – The scaling factor used to convert the XFLT radii (XFLT001 and
XFLT002 keywords) to an angle. If the values are in arcseconds
then rscale would be set to 1 * u.arcsec.

	rinner (float, optional) – The inner radius of the central annulus, in the same system as
the XFLT0001 and XFLT002 keyword values (this is a unitless
value).

	angdist (None or AstroPy.Quantity, optional) – The angular-diameter distance to the source. If not given then
it is calculated using the source redshift along with the
cosmology attribute.

	cosmology (None or astropy.cosmology object, optional) – The cosmology used to convert redshift to an angular-diameter
distance. This is used when angdist is None. If cosmology
is None then the astropy.cosmology.Planck15 Cosmology
object is used.

	Returns

	dep – The deproject instance with the files loaded and associated
with the correct annuli.

	Return type

	Deproject instance

Notes

This currently is not guaranteed to support multiple data sets in
the same annulus. There is no check that the annuli are touching and
do not overlap.

References

	1

	https://asd.gsfc.nasa.gov/XSPECwiki/projct_model

	2

	http://cxc.harvard.edu/ciao/ahelp/stack.html

Examples

Create a Deproject instance from the files matching the pattern
“src*.pi”, whose XFLT radii are in ACIS pixels:

>>> dep = deproject_from_xflt('src*.pi', 0.492 * u.arcsec)

When used in CIAO, the stack syntax can be used to specify the
files, so if the file clus.stk contains the file names, one
per line, then the following will read them in and create a
Deproject instance. In this case the XFLT radii are in arcminutes:

>>> dep = deproject_from_xflt('@clus.stk', 1 * u.arcmin)

The deproject.specstack module

Manipulate a stack of spectra in Sherpa.

The methods in the SpecStack class provide a way to automatically apply
familiar Sherpa commands such as set_par [https://sherpa.readthedocs.io/en/latest/ui/api/sherpa.astro.ui.set_par.html] or freeze [https://sherpa.readthedocs.io/en/latest/ui/api/sherpa.astro.ui.freeze.html] or plot_fit [https://sherpa.readthedocs.io/en/latest/ui/api/sherpa.astro.ui.plot_fit.html]
to a stack of PHA spectra. This simplifies simultaneous fitting of
multiple spectra.

Note that the specstack module is currently distributed within with the
deproject package. Specstack is not yet fully documented or tested
outside the context of deproject.

	Copyright

	Smithsonian Astrophysical Observatory (2009, 2019)

	Author

	Tom Aldcroft (taldcroft@cfa.harvard.edu), Douglas Burke (dburke@cfa.harvard.edu)

Classes

	SpecStack()

	Manipulate a stack of spectra in Sherpa.

SpecStack

	
class deproject.specstack.SpecStack

	Bases: object

Manipulate a stack of spectra in Sherpa.

This SpecStack class provides a number of wrappers around Sherpa
routines that handle loading data, setting the source model,
setting up the data to fit, such as: the noticed energy range, how to
handle the background, extracting parameter values, and plotting
data.

Attributes Summary

	datasets

	Information (dataset identifier, annulus, name) about the loaded data.

	n_datasets

	How many datasets are registered?

Methods Summary

	dummyfunc(*args, **kwargs)

	

	find_norm(shell)

	Return the normalization value for the given shell.

	find_parval(parname)

	Return the value of the first parameter matching the name.

	freeze(par)

	Freeze the given parameter in each shell.

	get_par(par)

	Return the parameter value for each shell.

	group(*args)

	Apply the grouping for each data set.

	ignore(*args)

	Apply Sherpa ignore command to each dataset.

	load_pha(specfile, annulus)

	Load a pha file and add to the datasets for stacked analysis.

	notice(*args)

	Apply Sherpa notice command to each dataset.

	plot_arf(*args, **kwargs)

	

	plot_bkg(*args, **kwargs)

	

	plot_bkg_chisqr(*args, **kwargs)

	

	plot_bkg_delchi(*args, **kwargs)

	

	plot_bkg_fit(*args, **kwargs)

	

	plot_bkg_fit_delchi(*args, **kwargs)

	

	plot_bkg_fit_resid(*args, **kwargs)

	

	plot_bkg_model(*args, **kwargs)

	

	plot_bkg_ratio(*args, **kwargs)

	

	plot_bkg_resid(*args, **kwargs)

	

	plot_bkg_source(*args, **kwargs)

	

	plot_bkg_unconvolved(*args, **kwargs)

	

	plot_chisqr(*args, **kwargs)

	

	plot_data(*args, **kwargs)

	

	plot_delchi(*args, **kwargs)

	

	plot_fit(*args, **kwargs)

	

	plot_fit_delchi(*args, **kwargs)

	

	plot_fit_resid(*args, **kwargs)

	

	plot_model(*args, **kwargs)

	

	plot_order(*args, **kwargs)

	

	plot_psf(*args, **kwargs)

	

	plot_ratio(*args, **kwargs)

	

	plot_resid(*args, **kwargs)

	

	plot_source(*args, **kwargs)

	

	print_window(*args, **kwargs)

	Create a hardcopy version of each plot window.

	set_par(par, val)

	Set the parameter value in each shell.

	subtract(*args)

	Subtract the background from each dataset.

	thaw(par)

	Thaw the given parameter in each shell.

	tie_par(par, base, *others)

	Tie parameters in one or more shells to the base shell.

	ungroup(*args)

	Turn off the grouping for each data set.

	unsubtract(*args)

	Un-subtract the background from each dataset.

	untie_par(par, *others)

	Remove the parameter tie/link in the shell.

Attributes Documentation

	
datasets = None

	Information (dataset identifier, annulus, name) about the loaded data.

	
n_datasets

	How many datasets are registered?

This is not the same as the number of annuli.

	Returns

	ndata – The number of datasets.

	Return type

	int

Methods Documentation

	
dummyfunc(*args, **kwargs)

	

	
find_norm(shell)

	Return the normalization value for the given shell.

This is limited to XSPEC-style models, where the parameter is called
“norm”.

	Parameters

	shell (int) – The shell number.

	Returns

	norm – The normalization of the shell.

	Return type

	float

	Raises

	ValueError – If there is not one norm parameter for the shell.

See also

find_parval(), set_par()

	
find_parval(parname)

	Return the value of the first parameter matching the name.

	Parameters

	parname (str) – The parameter name. The case is ignored in the match, and the
first match is returned.

	Returns

	parval – The parameter value

	Return type

	float

	Raises

	ValueError – There is no match for the parameter.

See also

find_norm(), set_par()

Examples

>>> kt = dep.find_parval('kt')

	
freeze(par)

	Freeze the given parameter in each shell.

	Parameters

	par (str) – The parameter name, specified as <model_type>.<par_name>

See also

thaw(), tie_par(), untie_par()

Examples

>>> dep.freeze('clus.abundanc')

	
get_par(par)

	Return the parameter value for each shell.

	Parameters

	par (str) – The parameter name, specified as <model_type>.<par_name>

	Returns

	vals – The parameter values, in shell order.

	Return type

	ndarray

See also

find_parval(), find_norm(), set_par()

Examples

>>> kts = dep.get_par('xsapec.kt')

	
group(*args)

	Apply the grouping for each data set.

See also

ungroup()

Examples

>>> dep.group()

	
ignore(*args)

	Apply Sherpa ignore command to each dataset.

The filter is applied to each data set separately.

See also

notice()

Examples

Restrict the analysis to those bins which fall in the range
0.5 to 7.0 keV, where the limits are not included in the
noticed range. The call to notice is used to clear any
existing filter.

>>> dep.notice(None, None)
>>> dep.ignore(None, 0.5)
>>> dep.ignore(7.0, None)

	
load_pha(specfile, annulus)

	Load a pha file and add to the datasets for stacked analysis.

It is required that datasets for all annuli are loaded before
the source model is created (to ensure that components are
created for each annulus).

	Parameters

	
	specfile (str or sherpa.astro.data.DataPHA object) – If a string, the name of the file containing the source spectrum,
which must be in PHA format (the data is expected to be extracted
on the PI column). If a DataPHA object, then this is used (and
is assumed to contain any needed background data).

	annulus (int) – The annulus number for the data.

	Returns

	dataid – The Sherpa dataset identifier used for this spectrum.

	Return type

	int

Examples

Load the data for four annuli from the files ‘ann1.pi’ to ‘ann4.pi’.

>>> dep.load_pha('ann1.pi', 0)
>>> dep.load_pha('ann2.pi', 1)
>>> dep.load_pha('ann3.pi', 2)
>>> dep.load_pha('ann4.pi', 3)

Load in the PHA files into Sherpa DataPHA objects, and then use
these objects:

>>> s1 = ui.unpack_pha('src1.pi')
>>> s2 = ui.unpack_pha('src2.pi')
>>> s3 = ui.unpack_pha('src3.pi')
>>> dep.load_pha(s1, 0)
>>> dep.load_pha(s2, 1)
>>> dep.load_pha(s3, 2)

	
notice(*args)

	Apply Sherpa notice command to each dataset.

The filter is applied to each data set separately.

See also

ignore()

Examples

Restrict the analysis to those bins which fall in the range
0.5 to 7.0 keV, where the limits are included in the noticed
range. The first call to notice is used to clear any
existing filter.

>>> dep.notice(None, None)
>>> dep.notice(0.5, 7.0)

	
plot_arf(*args, **kwargs)

	

	
plot_bkg(*args, **kwargs)

	

	
plot_bkg_chisqr(*args, **kwargs)

	

	
plot_bkg_delchi(*args, **kwargs)

	

	
plot_bkg_fit(*args, **kwargs)

	

	
plot_bkg_fit_delchi(*args, **kwargs)

	

	
plot_bkg_fit_resid(*args, **kwargs)

	

	
plot_bkg_model(*args, **kwargs)

	

	
plot_bkg_ratio(*args, **kwargs)

	

	
plot_bkg_resid(*args, **kwargs)

	

	
plot_bkg_source(*args, **kwargs)

	

	
plot_bkg_unconvolved(*args, **kwargs)

	

	
plot_chisqr(*args, **kwargs)

	

	
plot_data(*args, **kwargs)

	

	
plot_delchi(*args, **kwargs)

	

	
plot_fit(*args, **kwargs)

	

	
plot_fit_delchi(*args, **kwargs)

	

	
plot_fit_resid(*args, **kwargs)

	

	
plot_model(*args, **kwargs)

	

	
plot_order(*args, **kwargs)

	

	
plot_psf(*args, **kwargs)

	

	
plot_ratio(*args, **kwargs)

	

	
plot_resid(*args, **kwargs)

	

	
plot_source(*args, **kwargs)

	

	
print_window(*args, **kwargs)

	Create a hardcopy version of each plot window.

	Parameters

	
	args – The arguments to be sent to the “create a hardcopy” routine
(print_window for ChIPS and savefig for Matplotlib).
The first argument, if given, is assumed to be the file name
and so will have the shell number added to it.

	kwargs – Keyword arguments for the call.

Notes

This is not guaranteed to work properly for Matplotlib.

Examples

Create hardcopy versions of the data plots, called “data0”,
“data1”, …

>>> dep.plot_data()
>>> dep.print_window('data')

	
set_par(par, val)

	Set the parameter value in each shell.

	Parameters

	
	par (str) – The parameter name, specified as <model_type>.<par_name>

	val (float) – The parameter value.

See also

get_par(), tie_par()

Examples

>>> dep.set_par('xsapec.abundanc', 0.25)

	
subtract(*args)

	Subtract the background from each dataset.

See also

unsubtract()

Examples

>>> dep.substract()

	
thaw(par)

	Thaw the given parameter in each shell.

	Parameters

	par (str) – The parameter name, specified as <model_type>.<par_name>

See also

freeze(), tie_par(), untie_par()

Examples

>>> dep.thaw('clus.abundanc')

	
tie_par(par, base, *others)

	Tie parameters in one or more shells to the base shell.

This is a limited form of the Sherpa ability to link parameters,
since it sets the parameter in the other shells to the same
value as the parameter in the base shell. More complex
situations will require direct calls to sherpa.astro.ui.link.

	Parameters

	
	par (str) – The parameter specifier, as <model_type>.<par_name>.

	base (int) – The base shell number.

	*others (scalar) – The shell, or shells to link to the base shell.

See also

set_par(), untie_par()

Examples

Tie the temperature and abundance parameters in shell 9 to that
in shell 8, so that any fits will set the shell 9 values to those
used in shell 8 (so reducing the number of free parameters in the
fit).

>>> dep.tie_par('xsapec.kt', 8, 9)
Tying xsapec_9.kT to xsapec_8.kT
>>> dep.tie_par('xsapec.abundanc', 8, 9)
Tying xsapec_9.Abundanc to xsapec_8.Abundanc

Tie three annuli together:

>>> dep.tie_par('xsapec.kt', 12, 13, 14)
Tying xsapec_13.kT to xsapec_12.kT
Tying xsapec_14.kT to xsapec_12.kT

	
ungroup(*args)

	Turn off the grouping for each data set.

See also

group()

Examples

>>> dep.ungroup()

	
unsubtract(*args)

	Un-subtract the background from each dataset.

This can be useful when you want to compare the results to
the “wstat” stat (a Poisson-based stat which includes the
background data as a component and provides a goodness-of-fit
estimate).

See also

subtract()

Examples

>>> dep.unsubstract()

	
untie_par(par, *others)

	Remove the parameter tie/link in the shell.

This is intended to remove links between shells created by tie_par,
but will remove any links created by sherpa.astro.ui.link.

	Parameters

	
	par (str) – The parameter specifier, as <model_type>.<par_name>.

	*others (scalar) – The shell, or shells to un-tie/unlink.

See also

tie_par()

Notes

It is safe to call on a parameter that is not tied or linked
to another parameter.

Examples

Untie the abundance parameter in shell 9; that is, it is now free
to vary independently in a fit.

>>> dep.untie_par('xsapec.abundanc', 9)
Untying xsapec_9.Abundanc

Untie multiple annuli:

>>> dep.untie_par('xsmekal.kt', 13, 14)
Untying xsmekal_13.kT
Untying xsmekal_14.kT

 Python Module Index

 d

 		 	

 		
 d	

 	[image: -]
 	
 deproject	

 	
 	
 deproject.deproject	

 	
 	
 deproject.specstack	

Index

 A
 | C
 | D
 | F
 | G
 | I
 | L
 | N
 | P
 | R
 | S
 | T
 | U

A

 	
 	angdist (deproject.deproject.Deproject attribute)

C

 	
 	conf() (deproject.deproject.Deproject method)

 	conf_plot() (deproject.deproject.Deproject method)

 	
 	cosmology (deproject.deproject.Deproject attribute)

 	covar() (deproject.deproject.Deproject method)

 	covar_plot() (deproject.deproject.Deproject method)

D

 	
 	datasets (deproject.deproject.Deproject attribute)

 	(deproject.specstack.SpecStack attribute)

 	density_plot() (deproject.deproject.Deproject method)

 	Deproject (class in deproject.deproject)

 	
 	deproject.deproject (module)

 	deproject.specstack (module)

 	deproject_from_xflt() (in module deproject.deproject)

 	dummyfunc() (deproject.deproject.Deproject method)

 	(deproject.specstack.SpecStack method)

F

 	
 	find_norm() (deproject.deproject.Deproject method)

 	(deproject.specstack.SpecStack method)

 	find_parval() (deproject.deproject.Deproject method)

 	(deproject.specstack.SpecStack method)

 	
 	fit() (deproject.deproject.Deproject method)

 	fit_plot() (deproject.deproject.Deproject method)

 	freeze() (deproject.deproject.Deproject method)

 	(deproject.specstack.SpecStack method)

G

 	
 	get_conf_results() (deproject.deproject.Deproject method)

 	get_covar_results() (deproject.deproject.Deproject method)

 	get_density() (deproject.deproject.Deproject method)

 	get_fit_results() (deproject.deproject.Deproject method)

 	get_par() (deproject.deproject.Deproject method)

 	(deproject.specstack.SpecStack method)

 	
 	get_radii() (deproject.deproject.Deproject method)

 	get_shells() (deproject.deproject.Deproject method)

 	group() (deproject.deproject.Deproject method)

 	(deproject.specstack.SpecStack method)

 	guess() (deproject.deproject.Deproject method)

I

 	
 	ignore() (deproject.deproject.Deproject method)

 	(deproject.specstack.SpecStack method)

L

 	
 	load_pha() (deproject.deproject.Deproject method)

 	(deproject.specstack.SpecStack method)

N

 	
 	n_datasets (deproject.deproject.Deproject attribute)

 	(deproject.specstack.SpecStack attribute)

 	
 	notice() (deproject.deproject.Deproject method)

 	(deproject.specstack.SpecStack method)

P

 	
 	par_plot() (deproject.deproject.Deproject method)

 	plot_arf() (deproject.deproject.Deproject method)

 	(deproject.specstack.SpecStack method)

 	plot_bkg() (deproject.deproject.Deproject method)

 	(deproject.specstack.SpecStack method)

 	plot_bkg_chisqr() (deproject.deproject.Deproject method)

 	(deproject.specstack.SpecStack method)

 	plot_bkg_delchi() (deproject.deproject.Deproject method)

 	(deproject.specstack.SpecStack method)

 	plot_bkg_fit() (deproject.deproject.Deproject method)

 	(deproject.specstack.SpecStack method)

 	plot_bkg_fit_delchi() (deproject.deproject.Deproject method)

 	(deproject.specstack.SpecStack method)

 	plot_bkg_fit_resid() (deproject.deproject.Deproject method)

 	(deproject.specstack.SpecStack method)

 	plot_bkg_model() (deproject.deproject.Deproject method)

 	(deproject.specstack.SpecStack method)

 	plot_bkg_ratio() (deproject.deproject.Deproject method)

 	(deproject.specstack.SpecStack method)

 	plot_bkg_resid() (deproject.deproject.Deproject method)

 	(deproject.specstack.SpecStack method)

 	plot_bkg_source() (deproject.deproject.Deproject method)

 	(deproject.specstack.SpecStack method)

 	plot_bkg_unconvolved() (deproject.deproject.Deproject method)

 	(deproject.specstack.SpecStack method)

 	
 	plot_chisqr() (deproject.deproject.Deproject method)

 	(deproject.specstack.SpecStack method)

 	plot_data() (deproject.deproject.Deproject method)

 	(deproject.specstack.SpecStack method)

 	plot_delchi() (deproject.deproject.Deproject method)

 	(deproject.specstack.SpecStack method)

 	plot_fit() (deproject.deproject.Deproject method)

 	(deproject.specstack.SpecStack method)

 	plot_fit_delchi() (deproject.deproject.Deproject method)

 	(deproject.specstack.SpecStack method)

 	plot_fit_resid() (deproject.deproject.Deproject method)

 	(deproject.specstack.SpecStack method)

 	plot_model() (deproject.deproject.Deproject method)

 	(deproject.specstack.SpecStack method)

 	plot_order() (deproject.deproject.Deproject method)

 	(deproject.specstack.SpecStack method)

 	plot_psf() (deproject.deproject.Deproject method)

 	(deproject.specstack.SpecStack method)

 	plot_ratio() (deproject.deproject.Deproject method)

 	(deproject.specstack.SpecStack method)

 	plot_resid() (deproject.deproject.Deproject method)

 	(deproject.specstack.SpecStack method)

 	plot_source() (deproject.deproject.Deproject method)

 	(deproject.specstack.SpecStack method)

 	print_window() (deproject.deproject.Deproject method)

 	(deproject.specstack.SpecStack method)

R

 	
 	redshift (deproject.deproject.Deproject attribute)

S

 	
 	set_bkg_model() (deproject.deproject.Deproject method)

 	set_par() (deproject.deproject.Deproject method)

 	(deproject.specstack.SpecStack method)

 	
 	set_source() (deproject.deproject.Deproject method)

 	SpecStack (class in deproject.specstack)

 	subtract() (deproject.deproject.Deproject method)

 	(deproject.specstack.SpecStack method)

T

 	
 	thaw() (deproject.deproject.Deproject method)

 	(deproject.specstack.SpecStack method)

 	
 	tie_par() (deproject.deproject.Deproject method)

 	(deproject.specstack.SpecStack method)

U

 	
 	ungroup() (deproject.deproject.Deproject method)

 	(deproject.specstack.SpecStack method)

 	unsubtract() (deproject.deproject.Deproject method)

 	(deproject.specstack.SpecStack method)

 	
 	untie_par() (deproject.deproject.Deproject method)

 	(deproject.specstack.SpecStack method)

 _static/plus.png

_images/m87_compare_density.png
density

« Sherpa
o XSPEC
T =
§ =
&
—+
—+
F
* -
e
Ll
1072
100

Radius ()

_images/m87_compare_temperature.png
xsmekal.kT

3.00

2.75

2.50

2.25

2.00

175

150

xsmekal kT

« Sherpa
[XSPEC
_, = FE

100
Radius ()

_images/m87_ann0_fit.png
m87/rlgrspec.pha

tts/sec/keV.

ou

Energy (keV)

_static/up-pressed.png

_images/m87_ann0_guess.png
Counts/sec/keV

2.0

15

10

05

0.0

m87/rlgrspec.pha

100
Energy (keV)

_static/up.png

_images/m87_rstat.png
rstat

2.75

2.50

2.25

2.00

175

150

125

1.00

rstat

100

Radius (kpc)

10!

_images/m87_temperature.png
xsmekal .kt

2.8

2.6

E —— - -
$ 2.0 -
£
2

18 .
16

14

100 10

Radius (kpc)

_images/m87_density.png
e (cm=2)

density

107!
1072
1
100 -

Radius (kpc)

_images/m87_density_errs.png
ne (em=3)

0.10

0.08

0.06

0.04

0.02

density

100
Radius ()

_images/m87_temperature_abundance.png
3.0

2.5

2.0

xsmekal kT

15

xsmekal. Abundanc

xsmekal kT

+ +++.
~otte
~ A
—_— =~ *
10° 10!
xsmekal.Abundanc
_‘__’_++++ + 1
T .
B
10° 10!

Radius (kpc)

_images/m87_temperature_tied_comparison.png
xsmekal kT

xsmekal kT

2.8

2.6

2.4

2.2

2.0

18

16

14

10°

10%
Radius (pc)

_images/geometry.png
Spherical shells: 012345

To observer

2

AN}
\NJ

)

415
|

EFRFNSY

Annulus

_static/ajax-loader.gif

nav.xhtml

 Table of Contents

 		
 Deproject

 		
 Overview

 		
 Model creation

 		
 Fitting

 		
 Densities

 		
 Installation

 		
 Requirements

 		
 Using pip

 		
 CIAO

 		
 Standalone

 		
 Manual installation

 		
 Test

 		
 Example data

 		
 Changes

 		
 Version 0.2.0

 		
 Overview

 		
 Details

 		
 Version 0.1.0

 		
 To Do

 		
 M87

 		
 Set up

 		
 Load the data

 		
 Create the model

 		
 Define the data to fit

 		
 Define the optimiser and statistic

 		
 Seeding the fit

 		
 Fitting the data

 		
 Inspecting the results

 		
 Error analysis

 		
 Comparing results

 		
 Combining shells

 		
 Multiple datasets per annulus (3C186)

 		
 The deproject.deproject module

 		
 Deproject

 		
 deproject_from_xflt

 		
 Class Inheritance Diagram

 		
 The deproject.specstack module

 		
 SpecStack

_static/comment-close.png

_static/comment.png

_static/comment-bright.png

_static/file.png

_static/down-pressed.png

_static/down.png

_static/minus.png

